99
---------------------------------------------
/ / 3 2 \ \
| 99*\4 + p + 5*p + 8*p/ |
100*p*|1 + ---------------------------------|
| /4264 3433*p 2\|
| 100*p*|---- + ------ + 0.0625*p ||
\ \ 25 100 //
$$\frac{99}{100 p \left(1 + \frac{99 p^{3} + 495 p^{2} + 792 p + 396}{100 p \left(0.0625 p^{2} + \frac{3433 p}{100} + \frac{4264}{25}\right)}\right)}$$
99
-----------------------------------------
/ 2 3 \
| 99 99*p 99*p 198*p |
| -- + ----- + ----- + ----- |
| 25 20 100 25 |
100*p*|1 + -----------------------------|
| /4264 3433*p 2\|
| p*|---- + ------ + 0.0625*p ||
\ \ 25 100 //
$$\frac{99}{100 p \left(1 + \frac{\frac{99 p^{3}}{100} + \frac{99 p^{2}}{20} + \frac{198 p}{25} + \frac{99}{25}}{p \left(0.0625 p^{2} + \frac{3433 p}{100} + \frac{4264}{25}\right)}\right)}$$
0.99/(p*(1.0 + 0.99*(4.0 + p^3 + 8.0*p + 5.0*p^2)/(p*(170.56 + 0.0625*p^2 + 34.33*p))))
Рациональный знаменатель
[src] 2
42213600 + 8496675*p + 15468.75*p
----------------------------------------------
2 3
990000 + 9820000*p + 44620000*p + 263125.0*p
$$\frac{15468.75 p^{2} + 8496675 p + 42213600}{263125.0 p^{3} + 9820000 p^{2} + 44620000 p + 990000}$$
Объединение рациональных выражений
[src] 99*(17056 + p*(3433 + 6.25*p))
----------------------------------------------------------------
100*(396 + p*(17056 + p*(3433 + 6.25*p)) + 99*p*(8 + p*(5 + p)))
$$\frac{99 p \left(6.25 p + 3433\right) + 1688544}{9900 p \left(p \left(p + 5\right) + 8\right) + 100 p \left(p \left(6.25 p + 3433\right) + 17056\right) + 39600}$$
/ 2 \
1.0*\1688544.0 + 618.75*p + 339867.0*p/
------------------------------------------------
3 2
39600.0 + 10525.0*p + 392800.0*p + 1784800.0*p
$$\frac{618.75 p^{2} + 339867.0 p + 1688544.0}{10525.0 p^{3} + 392800.0 p^{2} + 1784800.0 p + 39600.0}$$
99
---------------------------------------
/ 99 / 3 2 \\
| -----*\p + 5*p + 8*p + 4/|
| 100*p |
100*p*|1 + ---------------------------|
| 2 3433*p 4264 |
| 0.0625*p + ------ + ---- |
\ 100 25 /
$$\frac{99}{100 p \left(\frac{\frac{99}{100 p} \left(8 p + p^{3} + 5 p^{2} + 4\right)}{0.0625 p^{2} + \frac{3433 p}{100} + \frac{4264}{25}} + 1\right)}$$
/ 2 \
1.0*\1688544.0 + 618.75*p + 339867.0*p/
------------------------------------------------
3 2
39600.0 + 10525.0*p + 392800.0*p + 1784800.0*p
$$\frac{618.75 p^{2} + 339867.0 p + 1688544.0}{10525.0 p^{3} + 392800.0 p^{2} + 1784800.0 p + 39600.0}$$
/ 2 \
0.99*\17056.0 + 6.25*p + 3433.0*p/
-----------------------------------------
3 2
396.0 + 105.25*p + 3928.0*p + 17848.0*p
$$\frac{6.1875 p^{2} + 3398.67 p + 16885.44}{105.25 p^{3} + 3928.0 p^{2} + 17848.0 p + 396.0}$$