Общий знаменатель (2/(x^2-1)+1/(x+1))*(x^2-x)-x

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
/  2        1  \ / 2    \    
|------ + -----|*\x  - x/ - x
| 2       x + 1|             
\x  - 1        /             
$$- x + \left(x^{2} - x\right) \left(\frac{2}{x^{2} - 1} + \frac{1}{x + 1}\right)$$
Численный ответ [src]
-x + (x^2 - x)*(1/(1.0 + x) + 2.0/(-1.0 + x^2))
Рациональный знаменатель [src]
/ 2    \ /     2      \             /      2\
\x  - x/*\1 + x  + 2*x/ - x*(1 + x)*\-1 + x /
---------------------------------------------
                      /      2\              
              (1 + x)*\-1 + x /              
$$\frac{1}{\left(x + 1\right) \left(x^{2} - 1\right)} \left(- x \left(x + 1\right) \left(x^{2} - 1\right) + \left(x^{2} - x\right) \left(x^{2} + 2 x + 1\right)\right)$$
Объединение рациональных выражений [src]
  /         /     2      \           /      2\\
x*\(-1 + x)*\1 + x  + 2*x/ - (1 + x)*\-1 + x //
-----------------------------------------------
                       /      2\               
               (1 + x)*\-1 + x /               
$$\frac{x}{\left(x + 1\right) \left(x^{2} - 1\right)} \left(\left(x - 1\right) \left(x^{2} + 2 x + 1\right) - \left(x + 1\right) \left(x^{2} - 1\right)\right)$$
Общее упрощение [src]
0
$$0$$
Комбинаторика [src]
0
$$0$$
Общий знаменатель [src]
0
$$0$$