1 2*m 2*m*n
- ----- - ------- + -------
m - n 2 2 3 3
m - n m + n
$$\frac{2 m n}{m^{3} + n^{3}} - \frac{2 m}{m^{2} - n^{2}} - \frac{1}{m - n}$$
-1/(m - n) - 2.0*m/(m^2 - n^2) + 2.0*m*n/(m^3 + n^3)
Рациональный знаменатель
[src] / / 3 3\ / 2 2\\ / 2 2\ / 3 3\
(m - n)*\- 2*m*\m + n / + 2*m*n*\m - n // - \m - n /*\m + n /
-----------------------------------------------------------------
/ 2 2\ / 3 3\
(m - n)*\m - n /*\m + n /
$$\frac{1}{\left(m - n\right) \left(m^{2} - n^{2}\right) \left(m^{3} + n^{3}\right)} \left(\left(m - n\right) \left(2 m n \left(m^{2} - n^{2}\right) - 2 m \left(m^{3} + n^{3}\right)\right) - \left(m^{2} - n^{2}\right) \left(m^{3} + n^{3}\right)\right)$$
Объединение рациональных выражений
[src] / 2 2\ / 3 3\ / 3 3 / 2 2\\
- \m - n /*\m + n / + 2*m*(m - n)*\- m - n + n*\m - n //
-------------------------------------------------------------
/ 2 2\ / 3 3\
(m - n)*\m - n /*\m + n /
$$\frac{1}{\left(m - n\right) \left(m^{2} - n^{2}\right) \left(m^{3} + n^{3}\right)} \left(2 m \left(m - n\right) \left(- m^{3} - n^{3} + n \left(m^{2} - n^{2}\right)\right) - \left(m^{2} - n^{2}\right) \left(m^{3} + n^{3}\right)\right)$$
3 3 2 2
- n - 3*m - 4*m*n + 4*n*m
-----------------------------
4 4 3 3
m - n + m*n - n*m
$$\frac{- 3 m^{3} + 4 m^{2} n - 4 m n^{2} - n^{3}}{m^{4} - m^{3} n + m n^{3} - n^{4}}$$
/ 3 3 2 2\
-\n + 3*m - 4*n*m + 4*m*n /
-------------------------------
4 4 3 3
m - n + m*n - n*m
$$- \frac{3 m^{3} - 4 m^{2} n + 4 m n^{2} + n^{3}}{m^{4} - m^{3} n + m n^{3} - n^{4}}$$
/ 3 3 2 2\
-\n + 3*m - 4*n*m + 4*m*n /
-------------------------------
/ 2 2 \
(m + n)*(m - n)*\m + n - m*n/
$$- \frac{3 m^{3} - 4 m^{2} n + 4 m n^{2} + n^{3}}{\left(m - n\right) \left(m + n\right) \left(m^{2} - m n + n^{2}\right)}$$