/ 2 \
2*\-24 + x + 6*x/ 2*(6 + 2*x)
-2 - ------------------ + -----------
2 -5 + x
(-5 + x)
-------------------------------------
-5 + x $$\frac{1}{x - 5} \left(-2 + \frac{4 x + 12}{x - 5} - \frac{1}{\left(x - 5\right)^{2}} \left(2 x^{2} + 12 x - 48\right)\right)$$
/ 2 \
2*(6 + 2*x) 2*\24 - x - 6*x/
-2 + ----------- + -----------------
-5 + x 2
(-5 + x)
------------------------------------
-5 + x $$\frac{1}{x - 5} \left(-2 + \frac{4 x + 12}{x - 5} + \frac{1}{\left(x - 5\right)^{2}} \left(- 2 x^{2} - 12 x + 48\right)\right)$$
2
12 + 4*x 48 - 12*x - 2*x
-2 + -------- + ----------------
-5 + x 2
(-5 + x)
--------------------------------
-5 + x $$\frac{1}{x - 5} \left(-2 + \frac{4 x + 12}{x - 5} + \frac{1}{\left(x - 5\right)^{2}} \left(- 2 x^{2} - 12 x + 48\right)\right)$$
2.0*(-1.0 - (-24.0 + x^2 + 6.0*x)/(-5.0 + x)^2 + 2.0*(3.0 + x)/(-5.0 + x))/(-5.0 + x)
Рациональный знаменатель
[src] 2 / 2 2 \
2*(-5 + x) *(6 + 2*x) + 2*(-5 + x)*\24 - x - (-5 + x) - 6*x/
--------------------------------------------------------------
4
(-5 + x) $$\frac{1}{\left(x - 5\right)^{4}} \left(2 \left(x - 5\right)^{2} \left(2 x + 6\right) + 2 \left(x - 5\right) \left(- x^{2} - 6 x - \left(x - 5\right)^{2} + 24\right)\right)$$
Объединение рациональных выражений
[src] / 2 2 \
2*\24 - x - (-5 + x) - 6*x + 2*(-5 + x)*(3 + x)/
--------------------------------------------------
3
(-5 + x) $$\frac{1}{\left(x - 5\right)^{3}} \left(- 2 x^{2} - 12 x - 2 \left(x - 5\right)^{2} + 4 \left(x - 5\right) \left(x + 3\right) + 48\right)$$
-62
------------------------
3 2
-125 + x - 15*x + 75*x$$- \frac{62}{x^{3} - 15 x^{2} + 75 x - 125}$$
/ 2 \
2*\-24 + x + 6*x/ 2*2*(3 + x)
-2 - ------------------ + -----------
2 -5 + x
(-5 + x)
-------------------------------------
-5 + x $$\frac{1}{x - 5} \left(-2 - \frac{1}{\left(x - 5\right)^{2}} \left(12 x + 2 \left(x^{2} - 24\right)\right) + \frac{4 \left(x + 3\right)}{x - 5}\right)$$
-62
------------------------
3 2
-125 + x - 15*x + 75*x$$- \frac{62}{x^{3} - 15 x^{2} + 75 x - 125}$$
$$- \frac{62}{\left(x - 5\right)^{3}}$$