/ 2 2 / 2\\
| 3 - x x *\-12 + 4*x /|
2*x*|-3 + ------- + ---------------|
| 2 2 |
| -1 + x / 2\ |
\ \-1 + x / /
------------------------------------
2
-1 + x
$$\frac{2 x}{x^{2} - 1} \left(\frac{x^{2} \left(4 x^{2} - 12\right)}{\left(x^{2} - 1\right)^{2}} + \frac{- x^{2} + 3}{x^{2} - 1} - 3\right)$$
/ 2 2 / 2\\
| -3 + x 4*x *\-3 + x /|
2*x*|-3 - ------- + --------------|
| 2 2 |
| -1 + x / 2\ |
\ \-1 + x / /
-----------------------------------
2
-1 + x
$$\frac{2 x}{x^{2} - 1} \left(\frac{4 x^{2} \left(x^{2} - 3\right)}{\left(x^{2} - 1\right)^{2}} - \frac{x^{2} - 3}{x^{2} - 1} - 3\right)$$
2.0*x*(-3.0 - (-3.0 + x^2)/(-1.0 + x^2) + 4.0*x^2*(-3.0 + x^2)/(-1.0 + x^2)^2)/(-1.0 + x^2)
Рациональный знаменатель
[src] / 2 \
|/ 2\ / 2\ 2 / 2\ / 2\|
2*x*\\-1 + x / *\6 - 4*x / + 4*x *\-1 + x /*\-3 + x //
------------------------------------------------------
4
/ 2\
\-1 + x /
$$\frac{2 x}{\left(x^{2} - 1\right)^{4}} \left(4 x^{2} \left(x^{2} - 3\right) \left(x^{2} - 1\right) + \left(- 4 x^{2} + 6\right) \left(x^{2} - 1\right)^{2}\right)$$
Объединение рациональных выражений
[src] // 2\ / 2\ 2 / 2\\
4*x*\\-1 + x /*\3 - 2*x / + 2*x *\-3 + x //
-------------------------------------------
3
/ 2\
\-1 + x /
$$\frac{4 x}{\left(x^{2} - 1\right)^{3}} \left(2 x^{2} \left(x^{2} - 3\right) + \left(- 2 x^{2} + 3\right) \left(x^{2} - 1\right)\right)$$
/ 2\
-4*x*\3 + x /
---------------------
6 4 2
-1 + x - 3*x + 3*x
$$- \frac{4 x \left(x^{2} + 3\right)}{x^{6} - 3 x^{4} + 3 x^{2} - 1}$$
/ 2 / 2\ 2\
| 4*x *\-3 + x / -3 + x |
2*x*|-3 + -------------- - -------|
| 2 2|
| / 2\ -1 + x |
\ \-1 + x / /
-----------------------------------
2
-1 + x
$$\frac{2 x}{x^{2} - 1} \left(\frac{4 x^{2} \left(x^{2} - 3\right)}{\left(x^{2} - 1\right)^{2}} - \frac{x^{2} - 3}{x^{2} - 1} - 3\right)$$
/ 2\
-4*x*\3 + x /
------------------
3 3
(1 + x) *(-1 + x)
$$- \frac{4 x \left(x^{2} + 3\right)}{\left(x - 1\right)^{3} \left(x + 1\right)^{3}}$$
/ 3 \
-\4*x + 12*x/
---------------------
6 4 2
-1 + x - 3*x + 3*x
$$- \frac{4 x^{3} + 12 x}{x^{6} - 3 x^{4} + 3 x^{2} - 1}$$