/ 2 2 2 \
| x x *(-1 + 2*x) 3*x*(-1 + 2*x)|
2*x*|3 - ---------- + -------------- - --------------|
| 2 2 2 |
| 1 + x - x / 2 \ 1 + x - x |
\ \1 + x - x/ /
------------------------------------------------------
2
1 + x - x
$$\frac{2 x}{x^{2} - x + 1} \left(\frac{x^{2} \left(2 x - 1\right)^{2}}{\left(x^{2} - x + 1\right)^{2}} - \frac{x^{2}}{x^{2} - x + 1} - \frac{3 x \left(2 x - 1\right)}{x^{2} - x + 1} + 3\right)$$
2.0*x*(3.0 - x^2/(1.0 + x^2 - x) + x^2*(-1.0 + 2.0*x)^2/(1.0 + x^2 - x)^2 - 3.0*x*(-1.0 + 2.0*x)/(1.0 + x^2 - x))/(1.0 + x^2 - x)
Рациональный знаменатель
[src] // 2 \ 3 \
||/ 2 \ / 2\ 2 2 / 2 \| / 2 \ / 2 \ |
2*x*\\\1 + x - x/ *\3 - 3*x + 2*x / + x *(-1 + 2*x) *\1 + x - x//*\1 + x - x/ - 3*x*\1 + x - x/ *(-1 + 2*x)/
----------------------------------------------------------------------------------------------------------------
5
/ 2 \
\1 + x - x/
$$\frac{2 x}{\left(x^{2} - x + 1\right)^{5}} \left(- 3 x \left(2 x - 1\right) \left(x^{2} - x + 1\right)^{3} + \left(x^{2} \left(2 x - 1\right)^{2} \left(x^{2} - x + 1\right) + \left(x^{2} - x + 1\right)^{2} \left(2 x^{2} - 3 x + 3\right)\right) \left(x^{2} - x + 1\right)\right)$$
Объединение рациональных выражений
[src] / 2 2 / 2 \ / 2\ / 2 \\
2*x*\x *(-1 + 2*x) + \1 + x - x/*\3 - 3*x + 2*x / - 3*x*(-1 + 2*x)*\1 + x - x//
----------------------------------------------------------------------------------
3
/ 2 \
\1 + x - x/
$$\frac{2 x}{\left(x^{2} - x + 1\right)^{3}} \left(x^{2} \left(2 x - 1\right)^{2} - 3 x \left(2 x - 1\right) \left(x^{2} - x + 1\right) + \left(x^{2} - x + 1\right) \left(2 x^{2} - 3 x + 3\right)\right)$$
-6*x*(-1 + x)
----------------------------------------
6 3 5 2 4
1 + x - 7*x - 3*x - 3*x + 6*x + 6*x
$$- \frac{6 x \left(x - 1\right)}{x^{6} - 3 x^{5} + 6 x^{4} - 7 x^{3} + 6 x^{2} - 3 x + 1}$$
/ 2 2 2 \
| x *(-1 + 2*x) x 3*x*(-1 + 2*x)|
2*x*|3 + -------------- - ---------- - --------------|
| 2 2 2 |
| / 2 \ 1 + x - x 1 + x - x |
\ \1 + x - x/ /
------------------------------------------------------
2
1 + x - x
$$\frac{2 x}{x^{2} - x + 1} \left(- \frac{x^{2}}{- x + x^{2} + 1} + \frac{x^{2} \left(2 x - 1\right)^{2}}{\left(- x + x^{2} + 1\right)^{2}} - \frac{3 x \left(2 x - 1\right)}{- x + x^{2} + 1} + 3\right)$$
/ 2\
-\-6*x + 6*x /
----------------------------------------
6 3 5 2 4
1 + x - 7*x - 3*x - 3*x + 6*x + 6*x
$$- \frac{6 x^{2} - 6 x}{x^{6} - 3 x^{5} + 6 x^{4} - 7 x^{3} + 6 x^{2} - 3 x + 1}$$
-6*x*(-1 + x)
-------------
3
/ 2 \
\1 + x - x/
$$- \frac{6 x \left(x - 1\right)}{\left(x^{2} - x + 1\right)^{3}}$$