((2.0^tan(x + z) - 2.0^sin(x + z))/(x + z)^2 - (2.0^tan(x) - 2.0^sin(x))/x^2)/z
Рациональный знаменатель
[src] 2 / tan(x + z) sin(x + z)\ 2 / sin(x) tan(x)\
x *\2 - 2 / + (x + z) *\2 - 2 /
-------------------------------------------------------------
2 2
x *z*(x + z) $$\frac{1}{x^{2} z \left(x + z\right)^{2}} \left(x^{2} \left(- 2^{\sin{\left (x + z \right )}} + 2^{\tan{\left (x + z \right )}}\right) + \left(2^{\sin{\left (x \right )}} - 2^{\tan{\left (x \right )}}\right) \left(x + z\right)^{2}\right)$$
Объединение рациональных выражений
[src] 2 / tan(x + z) sin(x + z)\ 2 / tan(x) sin(x)\
x *\2 - 2 / - (x + z) *\2 - 2 /
-------------------------------------------------------------
2 2
x *z*(x + z) $$\frac{1}{x^{2} z \left(x + z\right)^{2}} \left(x^{2} \left(- 2^{\sin{\left (x + z \right )}} + 2^{\tan{\left (x + z \right )}}\right) - \left(- 2^{\sin{\left (x \right )}} + 2^{\tan{\left (x \right )}}\right) \left(x + z\right)^{2}\right)$$
2 / tan(x + z) sin(x + z)\ 2 / sin(x) tan(x)\
x *\2 - 2 / + (x + z) *\2 - 2 /
-------------------------------------------------------------
2 2
x *z*(x + z) $$\frac{1}{x^{2} z \left(x + z\right)^{2}} \left(x^{2} \left(- 2^{\sin{\left (x + z \right )}} + 2^{\tan{\left (x + z \right )}}\right) + \left(2^{\sin{\left (x \right )}} - 2^{\tan{\left (x \right )}}\right) \left(x + z\right)^{2}\right)$$
1 + sin(x) sin(x) tan(x + z) 1 + tan(x) sin(x + z) tan(x) sin(x) tan(x)
2 2 2 2 2 2 z*2 z*2
------------------ + ------------------ + ------------------ - ------------------ - ------------------ - ------------------ + ------------------- - -------------------
3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 4 2 2 3 4 2 2 3
x + x*z + 2*z*x z + z*x + 2*x*z z + z*x + 2*x*z x + x*z + 2*z*x z + z*x + 2*x*z z + z*x + 2*x*z x + x *z + 2*z*x x + x *z + 2*z*x
$$\frac{2^{\sin{\left (x \right )} + 1}}{x^{3} + 2 x^{2} z + x z^{2}} - \frac{2^{\tan{\left (x \right )} + 1}}{x^{3} + 2 x^{2} z + x z^{2}} + \frac{2^{\sin{\left (x \right )}} z}{x^{4} + 2 x^{3} z + x^{2} z^{2}} + \frac{2^{\sin{\left (x \right )}}}{x^{2} z + 2 x z^{2} + z^{3}} - \frac{2^{\sin{\left (x + z \right )}}}{x^{2} z + 2 x z^{2} + z^{3}} - \frac{2^{\tan{\left (x \right )}} z}{x^{4} + 2 x^{3} z + x^{2} z^{2}} - \frac{2^{\tan{\left (x \right )}}}{x^{2} z + 2 x z^{2} + z^{3}} + \frac{2^{\tan{\left (x + z \right )}}}{x^{2} z + 2 x z^{2} + z^{3}}$$
/ sin(x + z) 2 tan(x) 2 tan(x) 2 sin(x) 2 sin(x) 2 tan(x + z) 2 sin(x) tan(x)\
-\2 *x + 2 *x + 2 *z - 2 *x - 2 *z - 2 *x - 2*x*z*2 + 2*x*z*2 /
-----------------------------------------------------------------------------------------------------------------------
4 2 3 3 2
z*x + x *z + 2*x *z $$- \frac{1}{x^{4} z + 2 x^{3} z^{2} + x^{2} z^{3}} \left(- 2^{\sin{\left (x \right )}} x^{2} - 2 \cdot 2^{\sin{\left (x \right )}} x z - 2^{\sin{\left (x \right )}} z^{2} + 2^{\sin{\left (x + z \right )}} x^{2} + 2^{\tan{\left (x \right )}} x^{2} + 2 \cdot 2^{\tan{\left (x \right )}} x z + 2^{\tan{\left (x \right )}} z^{2} - 2^{\tan{\left (x + z \right )}} x^{2}\right)$$
/ sin(x + z) 2 tan(x) 2 tan(x) 2 sin(x) 2 sin(x) 2 tan(x + z) 2 sin(x) tan(x)\
-\2 *x + 2 *x + 2 *z - 2 *x - 2 *z - 2 *x - 2*x*z*2 + 2*x*z*2 /
-----------------------------------------------------------------------------------------------------------------------
2 2
x *z*(x + z) $$- \frac{1}{x^{2} z \left(x + z\right)^{2}} \left(- 2^{\sin{\left (x \right )}} x^{2} - 2 \cdot 2^{\sin{\left (x \right )}} x z - 2^{\sin{\left (x \right )}} z^{2} + 2^{\sin{\left (x + z \right )}} x^{2} + 2^{\tan{\left (x \right )}} x^{2} + 2 \cdot 2^{\tan{\left (x \right )}} x z + 2^{\tan{\left (x \right )}} z^{2} - 2^{\tan{\left (x + z \right )}} x^{2}\right)$$
tan(x) + tan(z)
-----------------
1 - tan(x)*tan(z) cos(x)*sin(z) + cos(z)*sin(x) tan(x) sin(x)
2 - 2 2 - 2
--------------------------------------------------- - -----------------
2 2
(x + z) x
-----------------------------------------------------------------------
z $$\frac{1}{z} \left(\frac{1}{\left(x + z\right)^{2}} \left(2^{\frac{\tan{\left (x \right )} + \tan{\left (z \right )}}{- \tan{\left (x \right )} \tan{\left (z \right )} + 1}} - 2^{\sin{\left (x \right )} \cos{\left (z \right )} + \sin{\left (z \right )} \cos{\left (x \right )}}\right) - \frac{1}{x^{2}} \left(- 2^{\sin{\left (x \right )}} + 2^{\tan{\left (x \right )}}\right)\right)$$