Общий знаменатель asinh(x/(sqrt(2)*|x+1|)-sqrt(2)/|x+1|)/sqrt(3)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
     /                   ___ \
     |      x          \/ 2  |
asinh|------------- - -------|
     |  ___           |x + 1||
     \\/ 2 *|x + 1|          /
------------------------------
              ___             
            \/ 3              
$$\frac{1}{\sqrt{3}} \operatorname{asinh}{\left (\frac{x}{\sqrt{2} \left|{x + 1}\right|} - \frac{\sqrt{2}}{\left|{x + 1}\right|} \right )}$$
Степени [src]
           /     ___         ___ \
  ___      |   \/ 2      x*\/ 2  |
\/ 3 *asinh|- ------- + ---------|
           \  |1 + x|   2*|1 + x|/
----------------------------------
                3                 
$$\frac{\sqrt{3}}{3} \operatorname{asinh}{\left (\frac{\sqrt{2} x}{2 \left|{x + 1}\right|} - \frac{\sqrt{2}}{\left|{x + 1}\right|} \right )}$$
Численный ответ [src]
0.577350269189626*asinh(x/(sqrt(2)*|x + 1|) - sqrt(2)/|x + 1|)
Рациональный знаменатель [src]
           /  ___         \
  ___      |\/ 2 *(-2 + x)|
\/ 3 *asinh|--------------|
           \  2*|1 + x|   /
---------------------------
             3             
$$\frac{\sqrt{3}}{3} \operatorname{asinh}{\left (\frac{\sqrt{2} \left(x - 2\right)}{2 \left|{x + 1}\right|} \right )}$$
Объединение рациональных выражений [src]
           /  ___         \
  ___      |\/ 2 *(-2 + x)|
\/ 3 *asinh|--------------|
           \  2*|1 + x|   /
---------------------------
             3             
$$\frac{\sqrt{3}}{3} \operatorname{asinh}{\left (\frac{\sqrt{2} \left(x - 2\right)}{2 \left|{x + 1}\right|} \right )}$$
Общее упрощение [src]
           /  ___         \
  ___      |\/ 2 *(-2 + x)|
\/ 3 *asinh|--------------|
           \  2*|1 + x|   /
---------------------------
             3             
$$\frac{\sqrt{3}}{3} \operatorname{asinh}{\left (\frac{\sqrt{2} \left(x - 2\right)}{2 \left|{x + 1}\right|} \right )}$$
Собрать выражение [src]
           /                   ___ \
  ___      |      x          \/ 2  |
\/ 3 *asinh|------------- - -------|
           |  ___           |x + 1||
           \\/ 2 *|x + 1|          /
------------------------------------
                 3                  
$$\frac{\sqrt{3}}{3} \operatorname{asinh}{\left (\frac{x}{\sqrt{2} \left|{x + 1}\right|} - \frac{\sqrt{2}}{\left|{x + 1}\right|} \right )}$$
Общий знаменатель [src]
           /     ___         ___ \
  ___      |   \/ 2      x*\/ 2  |
\/ 3 *asinh|- ------- + ---------|
           \  |1 + x|   2*|1 + x|/
----------------------------------
                3                 
$$\frac{\sqrt{3}}{3} \operatorname{asinh}{\left (\frac{\sqrt{2} x}{2 \left|{x + 1}\right|} - \frac{\sqrt{2}}{\left|{x + 1}\right|} \right )}$$
Раскрыть выражение [src]
  ___      /     ___         ___ \
\/ 3       |   \/ 2      x*\/ 2  |
-----*asinh|- ------- + ---------|
  3        \  |x + 1|   2*|x + 1|/
$$\frac{\sqrt{3}}{3} \operatorname{asinh}{\left (\frac{\sqrt{2} x}{2 \left|{x + 1}\right|} - \frac{\sqrt{2}}{\left|{x + 1}\right|} \right )}$$