/ 1 x \
_______ | - - + - |
/ 1 - x | 1 2 2 |
/ ----- *(1 + x)*|- ------- + --------|
\/ 1 + x | 2 + 2*x 2|
\ (1 + x) /
------------------------------------------
/ 1 - x\
(1 - x)*|1 + -----|
\ 1 + x/
$$\frac{\sqrt{\frac{- x + 1}{x + 1}} \left(x + 1\right) \left(\frac{\frac{x}{2} - \frac{1}{2}}{\left(x + 1\right)^{2}} - \frac{1}{2 x + 2}\right)}{\left(- x + 1\right) \left(\frac{- x + 1}{x + 1} + 1\right)}$$
_______
/ 1 - x / 1 1 - x \
/ ----- *(1 + x)*|- ------- - ----------|
\/ 1 + x | 2 + 2*x 2|
\ 2*(1 + x) /
--------------------------------------------
/ 1 - x\
(1 - x)*|1 + -----|
\ 1 + x/
$$\frac{\sqrt{\frac{- x + 1}{x + 1}} \left(x + 1\right) \left(- \frac{- x + 1}{2 \left(x + 1\right)^{2}} - \frac{1}{2 x + 2}\right)}{\left(- x + 1\right) \left(\frac{- x + 1}{x + 1} + 1\right)}$$
((1.0 - x)/(1.0 + x))^0.5*(1.0 + x)*(-1/(2.0 + 2.0*x) - 0.5*(1.0 - x)/(1.0 + x)^2)/((1.0 - x)*(1.0 + (1.0 - x)/(1.0 + x)))
Рациональный знаменатель
[src] _______
/ 1 - x / 2 \
/ ----- *\- 2*(1 + x) + (-1 + x)*(2 + 2*x)/
\/ 1 + x
-----------------------------------------------
2*(2 - 2*x)*(2 + 2*x)
$$\frac{\sqrt{\frac{- x + 1}{x + 1}} \left(\left(x - 1\right) \left(2 x + 2\right) - 2 \left(x + 1\right)^{2}\right)}{2 \left(- 2 x + 2\right) \left(2 x + 2\right)}$$
Объединение рациональных выражений
[src] _______
/ 1 - x
- / -----
\/ 1 + x
-------------
2*(1 - x)
$$- \frac{\sqrt{\frac{- x + 1}{x + 1}}}{- 2 x + 2}$$
_______
/ 1 - x
/ -----
\/ 1 + x
-----------
2*(-1 + x)
$$\frac{\sqrt{\frac{- x + 1}{x + 1}}}{2 x - 2}$$
____________
/ -(-1 + x)
/ ----------
\/ 1 + x
----------------
2*(-1 + x)
$$\frac{\sqrt{- \frac{x - 1}{x + 1}}}{2 x - 2}$$
_______________
/ 1 x
/ ----- - -----
\/ 1 + x 1 + x
-------------------
-2 + 2*x
$$\frac{\sqrt{- \frac{x}{x + 1} + \frac{1}{x + 1}}}{2 x - 2}$$
_______
/ 1 / 1 1 - x \
/ ----- *(1 + x)*|- --------- - ----------|
\/ 1 + x | 2*(1 + x) 2|
\ 2*(1 + x) /
----------------------------------------------
_______ / 1 - x\
\/ 1 - x *|1 + -----|
\ 1 + x/
$$\frac{\left(x + 1\right) \left(- \frac{- x + 1}{2 \left(x + 1\right)^{2}} - \frac{1}{2 x + 2}\right) \sqrt{\frac{1}{x + 1}}}{\sqrt{- x + 1} \left(\frac{- x + 1}{x + 1} + 1\right)}$$
_______
/ 1 - x / 1 1 - x \
/ ----- *(1 + x)*|- --------- - ----------|
\/ 1 + x | 2*(1 + x) 2|
\ 2*(1 + x) /
----------------------------------------------
/ 1 - x\
(1 - x)*|1 + -----|
\ 1 + x/
$$\frac{\sqrt{\frac{- x + 1}{x + 1}} \left(x + 1\right) \left(- \frac{- x + 1}{2 \left(x + 1\right)^{2}} - \frac{1}{2 x + 2}\right)}{\left(- x + 1\right) \left(\frac{- x + 1}{x + 1} + 1\right)}$$