m -2 - m
------------ + -----------
2 2
1 + m - 2*m -2 + m + m $$\frac{m}{m^{2} - 2 m + 1} + \frac{- m - 2}{m^{2} + m - 2}$$
m/(1.0 + m^2 - 2.0*m) - (2.0 + m)/(-2.0 + m + m^2)
Рациональный знаменатель
[src] / 2\ / 2 \
m*\-2 + m + m / + (-2 - m)*\1 + m - 2*m/
-----------------------------------------
/ 2 \ / 2\
\1 + m - 2*m/*\-2 + m + m / $$\frac{m \left(m^{2} + m - 2\right) + \left(- m - 2\right) \left(m^{2} - 2 m + 1\right)}{\left(m^{2} - 2 m + 1\right) \left(m^{2} + m - 2\right)}$$
Объединение рациональных выражений
[src]m*(-2 + m*(1 + m)) - (1 + m*(-2 + m))*(2 + m)
---------------------------------------------
(1 + m*(-2 + m))*(-2 + m*(1 + m)) $$\frac{m \left(m \left(m + 1\right) - 2\right) - \left(m + 2\right) \left(m \left(m - 2\right) + 1\right)}{\left(m \left(m - 2\right) + 1\right) \left(m \left(m + 1\right) - 2\right)}$$
1
------------
2
1 + m - 2*m$$\frac{1}{m^{2} - 2 m + 1}$$
$$\frac{1}{\left(m - 1\right)^{2}}$$
1
------------
2
1 + m - 2*m$$\frac{1}{m^{2} - 2 m + 1}$$