/ k k k \ / k k \
n*\(1 + p) + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/ n*\p + (1 + p) *(1 + k)/
------------------------------------------------------ - -------------------------
k 2
k
$$\frac{n}{k} \left(p^{k} \log{\left (p \right )} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + \left(p + 1\right)^{k}\right) - \frac{n}{k^{2}} \left(p^{k} + \left(k + 1\right) \left(p + 1\right)^{k}\right)$$
n*((1.0 + p)^k + p^k*log(p) + (1.0 + p)^k*(1.0 + k)*log(1 + p))/k - n*(p^k + (1.0 + p)^k*(1.0 + k))/k^2
Рациональный знаменатель
[src] 2 / k k k \ / k k \
n*k *\(1 + p) + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/ - k*n*\p + (1 + p) *(1 + k)/
---------------------------------------------------------------------------------------
3
k
$$\frac{1}{k^{3}} \left(k^{2} n \left(p^{k} \log{\left (p \right )} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + \left(p + 1\right)^{k}\right) - k n \left(p^{k} + \left(k + 1\right) \left(p + 1\right)^{k}\right)\right)$$
Объединение рациональных выражений
[src] / k / k k k \ k \
n*\- p + k*\(1 + p) + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/ - (1 + p) *(1 + k)/
------------------------------------------------------------------------------------
2
k
$$\frac{n}{k^{2}} \left(k \left(p^{k} \log{\left (p \right )} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + \left(p + 1\right)^{k}\right) - p^{k} - \left(k + 1\right) \left(p + 1\right)^{k}\right)$$
/ k / k k k \ k \
n*\- p + k*\(1 + p) + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/ - (1 + p) *(1 + k)/
------------------------------------------------------------------------------------
2
k
$$\frac{n}{k^{2}} \left(k \left(p^{k} \log{\left (p \right )} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + \left(p + 1\right)^{k}\right) - p^{k} - \left(k + 1\right) \left(p + 1\right)^{k}\right)$$
k k / 2 \
n*p *(-1 + k*log(p)) + n*(1 + p) *\-1 + k*log(1 + p) + k *log(1 + p)/
---------------------------------------------------------------------
2
k
$$\frac{1}{k^{2}} \left(n p^{k} \left(k \log{\left (p \right )} - 1\right) + n \left(p + 1\right)^{k} \left(k^{2} \log{\left (p + 1 \right )} + k \log{\left (p + 1 \right )} - 1\right)\right)$$
k k k k
- n*p - n*(1 + p) + k*n*p *log(p) + k*n*(1 + p) *log(1 + p) k
------------------------------------------------------------- + n*(1 + p) *log(1 + p)
2
k
$$n \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + \frac{1}{k^{2}} \left(k n p^{k} \log{\left (p \right )} + k n \left(p + 1\right)^{k} \log{\left (p + 1 \right )} - n p^{k} - n \left(p + 1\right)^{k}\right)$$
/ k k k k 2 k \
n*\- p - (1 + p) + k*p *log(p) + k*(1 + p) *log(1 + p) + k *(1 + p) *log(1 + p)/
----------------------------------------------------------------------------------
2
k
$$\frac{n}{k^{2}} \left(k^{2} \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + k p^{k} \log{\left (p \right )} + k \left(p + 1\right)^{k} \log{\left (p + 1 \right )} - p^{k} - \left(p + 1\right)^{k}\right)$$
/ k k k \ / k k \
n*\(1 + p) + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/ n*\p + (1 + p) *(1 + k)/
------------------------------------------------------ - -------------------------
k 2
k
$$\frac{n}{k} \left(p^{k} \log{\left (p \right )} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + \left(p + 1\right)^{k}\right) - \frac{n}{k^{2}} \left(p^{k} + \left(k + 1\right) \left(p + 1\right)^{k}\right)$$