Найдите общий знаменатель для дробей n*((1+p)^k+p^k*log(p)+(1+p)^k*(k+1)*log(1+p))/k-n*(p^k+(k+1)*(1+p)^k)/k^2 (n умножить на ((1 плюс p) в степени k плюс p в степени k умножить на логарифм от (p) плюс (1 плюс p) в степени k умножить на (k плюс 1) умножить на логарифм от (1 плюс p)) делить на k минус n умножить на (p в степени k плюс (k плюс 1) умножить на (1 плюс p) в степени k) делить на k в квадрате) - найти с решением [Есть ответ!]

Общий знаменатель n*((1+p)^k+p^k*log(p)+(1+ ... n*(p^k+(k+1)*(1+p)^k)/k^2

Учитель очень удивится увидев твоё верное решение😉

Решение

Вы ввели [src]
  /       k    k                 k                   \     / k                  k\
n*\(1 + p)  + p *log(p) + (1 + p) *(k + 1)*log(1 + p)/   n*\p  + (k + 1)*(1 + p) /
------------------------------------------------------ - -------------------------
                          k                                           2           
                                                                     k            
$$- \frac{n}{k^{2}} \left(p^{k} + \left(k + 1\right) \left(p + 1\right)^{k}\right) + \frac{n}{k} \left(\left(k + 1\right) \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + p^{k} \log{\left (p \right )} + \left(p + 1\right)^{k}\right)$$
Степени [src]
  /       k    k                 k                   \     / k          k        \
n*\(1 + p)  + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/   n*\p  + (1 + p) *(1 + k)/
------------------------------------------------------ - -------------------------
                          k                                           2           
                                                                     k            
$$\frac{n}{k} \left(p^{k} \log{\left (p \right )} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + \left(p + 1\right)^{k}\right) - \frac{n}{k^{2}} \left(p^{k} + \left(k + 1\right) \left(p + 1\right)^{k}\right)$$
Численный ответ [src]
n*((1.0 + p)^k + p^k*log(p) + (1.0 + p)^k*(1.0 + k)*log(1 + p))/k - n*(p^k + (1.0 + p)^k*(1.0 + k))/k^2
Рациональный знаменатель [src]
   2 /       k    k                 k                   \       / k          k        \
n*k *\(1 + p)  + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/ - k*n*\p  + (1 + p) *(1 + k)/
---------------------------------------------------------------------------------------
                                            3                                          
                                           k                                           
$$\frac{1}{k^{3}} \left(k^{2} n \left(p^{k} \log{\left (p \right )} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + \left(p + 1\right)^{k}\right) - k n \left(p^{k} + \left(k + 1\right) \left(p + 1\right)^{k}\right)\right)$$
Объединение рациональных выражений [src]
  /   k     /       k    k                 k                   \          k        \
n*\- p  + k*\(1 + p)  + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/ - (1 + p) *(1 + k)/
------------------------------------------------------------------------------------
                                          2                                         
                                         k                                          
$$\frac{n}{k^{2}} \left(k \left(p^{k} \log{\left (p \right )} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + \left(p + 1\right)^{k}\right) - p^{k} - \left(k + 1\right) \left(p + 1\right)^{k}\right)$$
Общее упрощение [src]
  /   k     /       k    k                 k                   \          k        \
n*\- p  + k*\(1 + p)  + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/ - (1 + p) *(1 + k)/
------------------------------------------------------------------------------------
                                          2                                         
                                         k                                          
$$\frac{n}{k^{2}} \left(k \left(p^{k} \log{\left (p \right )} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + \left(p + 1\right)^{k}\right) - p^{k} - \left(k + 1\right) \left(p + 1\right)^{k}\right)$$
Собрать выражение [src]
   k                            k /                     2           \
n*p *(-1 + k*log(p)) + n*(1 + p) *\-1 + k*log(1 + p) + k *log(1 + p)/
---------------------------------------------------------------------
                                   2                                 
                                  k                                  
$$\frac{1}{k^{2}} \left(n p^{k} \left(k \log{\left (p \right )} - 1\right) + n \left(p + 1\right)^{k} \left(k^{2} \log{\left (p + 1 \right )} + k \log{\left (p + 1 \right )} - 1\right)\right)$$
Общий знаменатель [src]
     k            k        k                     k                                   
- n*p  - n*(1 + p)  + k*n*p *log(p) + k*n*(1 + p) *log(1 + p)            k           
------------------------------------------------------------- + n*(1 + p) *log(1 + p)
                               2                                                     
                              k                                                      
$$n \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + \frac{1}{k^{2}} \left(k n p^{k} \log{\left (p \right )} + k n \left(p + 1\right)^{k} \log{\left (p + 1 \right )} - n p^{k} - n \left(p + 1\right)^{k}\right)$$
Комбинаторика [src]
  /   k          k      k                   k               2        k           \
n*\- p  - (1 + p)  + k*p *log(p) + k*(1 + p) *log(1 + p) + k *(1 + p) *log(1 + p)/
----------------------------------------------------------------------------------
                                         2                                        
                                        k                                         
$$\frac{n}{k^{2}} \left(k^{2} \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + k p^{k} \log{\left (p \right )} + k \left(p + 1\right)^{k} \log{\left (p + 1 \right )} - p^{k} - \left(p + 1\right)^{k}\right)$$
Раскрыть выражение [src]
  /       k    k                 k                   \     / k          k        \
n*\(1 + p)  + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/   n*\p  + (1 + p) *(1 + k)/
------------------------------------------------------ - -------------------------
                          k                                           2           
                                                                     k            
$$\frac{n}{k} \left(p^{k} \log{\left (p \right )} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left (p + 1 \right )} + \left(p + 1\right)^{k}\right) - \frac{n}{k^{2}} \left(p^{k} + \left(k + 1\right) \left(p + 1\right)^{k}\right)$$