Найдите общий знаменатель для дробей (1/x-1/y)*x*y/y-x ((1 делить на х минус 1 делить на у) умножить на х умножить на у делить на у минус х) - найти с решением [Есть ответ!]

Общий знаменатель (1/x-1/y)*x*y/y-x

Учитель очень удивится увидев твоё верное решение😉

Решение

Вы ввели [src]
/1   1\        
|- - -|*x*y    
\x   y/        
----------- - x
     y         
$$- x + \frac{y}{y} x \left(- \frac{1}{y} + \frac{1}{x}\right)$$
Степени [src]
       /1   1\
-x + x*|- - -|
       \x   y/
$$x \left(- \frac{1}{y} + \frac{1}{x}\right) - x$$
Численный ответ [src]
-x + x*y*(1/x - 1/y)/y
Рациональный знаменатель [src]
   2  2              
- x *y  + x*y*(y - x)
---------------------
            2        
         x*y         
$$\frac{1}{x y^{2}} \left(- x^{2} y^{2} + x y \left(- x + y\right)\right)$$
Объединение рациональных выражений [src]
y - x - x*y
-----------
     y     
$$\frac{1}{y} \left(- x y - x + y\right)$$
Общее упрощение [src]
        x
1 - x - -
        y
$$- x - \frac{x}{y} + 1$$
Собрать выражение [src]
       /1   1\
-x + x*|- - -|
       \x   y/
$$x \left(- \frac{1}{y} + \frac{1}{x}\right) - x$$
Комбинаторика [src]
-(x - y + x*y) 
---------------
       y       
$$- \frac{1}{y} \left(x y + x - y\right)$$
Общий знаменатель [src]
        x
1 - x - -
        y
$$- x - \frac{x}{y} + 1$$