1 3 + 2*n
1 - -------- - -----------------
2 2 2
(1 + n) (1 + n) *(2 + n)
$$1 - \frac{1}{\left(n + 1\right)^{2}} - \frac{2 n + 3}{\left(n + 1\right)^{2} \left(n + 2\right)^{2}}$$
1 -3 - 2*n
1 - -------- + -----------------
2 2 2
(1 + n) (1 + n) *(2 + n)
$$\frac{- 2 n - 3}{\left(n + 1\right)^{2} \left(n + 2\right)^{2}} + 1 - \frac{1}{\left(n + 1\right)^{2}}$$
1.0 - 1/(1.0 + n)^2 - (3.0 + 2.0*n)/((1.0 + n)^2*(2.0 + n)^2)
Рациональный знаменатель
[src] 2 2 2
(1 + n) *(-3 - 2*n) - (1 + n) *(2 + n)
1 + ---------------------------------------
4 2
(1 + n) *(2 + n)
$$1 + \frac{1}{\left(n + 1\right)^{4} \left(n + 2\right)^{2}} \left(\left(- 2 n - 3\right) \left(n + 1\right)^{2} - \left(n + 1\right)^{2} \left(n + 2\right)^{2}\right)$$
Объединение рациональных выражений
[src] 2 2 2
-3 - (2 + n) - 2*n + (1 + n) *(2 + n)
---------------------------------------
2 2
(1 + n) *(2 + n)
$$\frac{1}{\left(n + 1\right)^{2} \left(n + 2\right)^{2}} \left(- 2 n + \left(n + 1\right)^{2} \left(n + 2\right)^{2} - \left(n + 2\right)^{2} - 3\right)$$
2 2 2
-3 - (2 + n) - 2*n + (1 + n) *(2 + n)
---------------------------------------
2 2
(1 + n) *(2 + n)
$$\frac{1}{\left(n + 1\right)^{2} \left(n + 2\right)^{2}} \left(- 2 n + \left(n + 1\right)^{2} \left(n + 2\right)^{2} - \left(n + 2\right)^{2} - 3\right)$$
1 2*n + 3
1 - -------- - -----------------
2 2 2
(n + 1) (n + 1) *(n + 2)
$$1 - \frac{1}{\left(n + 1\right)^{2}} - \frac{1}{\left(n + 1\right)^{2} \left(n + 2\right)^{2}} \left(2 n + 3\right)$$
4 3 2
-3 + n + 6*n + 6*n + 12*n
----------------------------
2 2
(1 + n) *(2 + n)
$$\frac{n^{4} + 6 n^{3} + 12 n^{2} + 6 n - 3}{\left(n + 1\right)^{2} \left(n + 2\right)^{2}}$$
2
7 + n + 6*n
1 - ----------------------------
4 3 2
4 + n + 6*n + 12*n + 13*n
$$- \frac{n^{2} + 6 n + 7}{n^{4} + 6 n^{3} + 13 n^{2} + 12 n + 4} + 1$$
1 2*n + 3
1 - -------- - -----------------
2 2 2
(n + 1) (n + 1) *(n + 2)
$$1 - \frac{1}{\left(n + 1\right)^{2}} - \frac{2 n + 3}{\left(n + 1\right)^{2} \left(n + 2\right)^{2}}$$