/ 2 \
6*(-10 + 2*x) 6*\24 + x - 10*x/
6 - ------------- + ------------------
-11 + x 2
(-11 + x)
--------------------------------------
-11 + x
$$\frac{1}{x - 11} \left(6 - \frac{12 x - 60}{x - 11} + \frac{1}{\left(x - 11\right)^{2}} \left(6 x^{2} - 60 x + 144\right)\right)$$
2
60 - 12*x 144 - 60*x + 6*x
6 + --------- + -----------------
-11 + x 2
(-11 + x)
---------------------------------
-11 + x
$$\frac{1}{x - 11} \left(\frac{- 12 x + 60}{x - 11} + 6 + \frac{1}{\left(x - 11\right)^{2}} \left(6 x^{2} - 60 x + 144\right)\right)$$
/ 2 \
6*(10 - 2*x) 6*\24 + x - 10*x/
6 + ------------ + ------------------
-11 + x 2
(-11 + x)
-------------------------------------
-11 + x
$$\frac{1}{x - 11} \left(\frac{- 12 x + 60}{x - 11} + 6 + \frac{1}{\left(x - 11\right)^{2}} \left(6 x^{2} - 60 x + 144\right)\right)$$
6.0*(1.0 + (24.0 + x^2 - 10.0*x)/(-11.0 + x)^2 - 2.0*(-5.0 + x)/(-11.0 + x))/(-11.0 + x)
Рациональный знаменатель
[src] 2 / 2 2 \
6*(-11 + x) *(10 - 2*x) + 6*(-11 + x)*\24 + x + (-11 + x) - 10*x/
-------------------------------------------------------------------
4
(-11 + x)
$$\frac{1}{\left(x - 11\right)^{4}} \left(6 \left(- 2 x + 10\right) \left(x - 11\right)^{2} + 6 \left(x - 11\right) \left(x^{2} - 10 x + \left(x - 11\right)^{2} + 24\right)\right)$$
Объединение рациональных выражений
[src] / 2 2 \
6*\24 + x + (-11 + x) - 10*x - 2*(-11 + x)*(-5 + x)/
------------------------------------------------------
3
(-11 + x)
$$\frac{1}{\left(x - 11\right)^{3}} \left(6 x^{2} - 60 x + 6 \left(x - 11\right)^{2} - 12 \left(x - 11\right) \left(x - 5\right) + 144\right)$$
210
--------------------------
3 2
-1331 + x - 33*x + 363*x
$$\frac{210}{x^{3} - 33 x^{2} + 363 x - 1331}$$
/ 2 \
6*2*(-5 + x) 6*\24 + x - 10*x/
6 - ------------ + ------------------
-11 + x 2
(-11 + x)
-------------------------------------
-11 + x
$$\frac{1}{x - 11} \left(6 + \frac{1}{\left(x - 11\right)^{2}} \left(- 60 x + 6 \left(x^{2} + 24\right)\right) - \frac{12 x - 60}{x - 11}\right)$$
210
--------------------------
3 2
-1331 + x - 33*x + 363*x
$$\frac{210}{x^{3} - 33 x^{2} + 363 x - 1331}$$
210
----------
3
(-11 + x)
$$\frac{210}{\left(x - 11\right)^{3}}$$