(-cos(pi/4 + x) + sin(pi/4 + x))/(cos(pi/4 + x) + sin(pi/4 + x))
Объединение рациональных выражений
[src] /pi + 4*x\ /pi + 4*x\
- cos|--------| + sin|--------|
\ 4 / \ 4 /
-------------------------------
/pi + 4*x\ /pi + 4*x\
cos|--------| + sin|--------|
\ 4 / \ 4 /
$$\frac{\sin{\left (\frac{1}{4} \left(4 x + \pi\right) \right )} - \cos{\left (\frac{1}{4} \left(4 x + \pi\right) \right )}}{\sin{\left (\frac{1}{4} \left(4 x + \pi\right) \right )} + \cos{\left (\frac{1}{4} \left(4 x + \pi\right) \right )}}$$
$$\tan{\left (x \right )}$$
/ pi\ / pi\
sin|x + --| cos|x + --|
\ 4 / \ 4 /
------------------------- - -------------------------
/ pi\ / pi\ / pi\ / pi\
cos|x + --| + sin|x + --| cos|x + --| + sin|x + --|
\ 4 / \ 4 / \ 4 / \ 4 /
$$\frac{\sin{\left (x + \frac{\pi}{4} \right )}}{\sin{\left (x + \frac{\pi}{4} \right )} + \cos{\left (x + \frac{\pi}{4} \right )}} - \frac{\cos{\left (x + \frac{\pi}{4} \right )}}{\sin{\left (x + \frac{\pi}{4} \right )} + \cos{\left (x + \frac{\pi}{4} \right )}}$$
/ pi\
2*sin|x + --|
\ 4 /
-1 + -------------------------
/ pi\ / pi\
cos|x + --| + sin|x + --|
\ 4 / \ 4 /
$$-1 + \frac{2 \sin{\left (x + \frac{\pi}{4} \right )}}{\sin{\left (x + \frac{\pi}{4} \right )} + \cos{\left (x + \frac{\pi}{4} \right )}}$$
Тригонометрическая часть
[src]$$\tan{\left (x \right )}$$
/ / pi\ / pi\\
-|- sin|x + --| + cos|x + --||
\ \ 4 / \ 4 //
-------------------------------
/ pi\ / pi\
cos|x + --| + sin|x + --|
\ 4 / \ 4 /
$$- \frac{- \sin{\left (x + \frac{\pi}{4} \right )} + \cos{\left (x + \frac{\pi}{4} \right )}}{\sin{\left (x + \frac{\pi}{4} \right )} + \cos{\left (x + \frac{\pi}{4} \right )}}$$
$$\frac{\sin{\left (x \right )}}{\cos{\left (x \right )}}$$