(1 + sin(x))*sin(x)
-------------------
/x pi\
cot|- + --|
\2 4 /
$$\frac{\left(\sin{\left (x \right )} + 1\right) \sin{\left (x \right )}}{\cot{\left (\frac{x}{2} + \frac{\pi}{4} \right )}}$$
(1.0 + sin(x))*sin(x)/tan(pi/4 - x/2)
Рациональный знаменатель
[src] 2
sin (x) + sin(x)
----------------
/x pi\
cot|- + --|
\2 4 /
$$\frac{\sin^{2}{\left (x \right )} + \sin{\left (x \right )}}{\cot{\left (\frac{x}{2} + \frac{\pi}{4} \right )}}$$
Объединение рациональных выражений
[src](1 + sin(x))*sin(x)
-------------------
/pi - 2*x\
tan|--------|
\ 4 /
$$\frac{\left(\sin{\left (x \right )} + 1\right) \sin{\left (x \right )}}{\tan{\left (\frac{1}{4} \left(- 2 x + \pi\right) \right )}}$$
/x pi\
(1 + sin(x))*sin(x)*tan|- + --|
\2 4 /
$$\left(\sin{\left (x \right )} + 1\right) \sin{\left (x \right )} \tan{\left (\frac{x}{2} + \frac{\pi}{4} \right )}$$
/1 cos(2*x) \ /x pi\
|- - -------- + sin(x)|*tan|- + --|
\2 2 / \2 4 /
$$\left(\sin{\left (x \right )} - \frac{1}{2} \cos{\left (2 x \right )} + \frac{1}{2}\right) \tan{\left (\frac{x}{2} + \frac{\pi}{4} \right )}$$
(1 + sin(x))*sin(x)
-------------------
/pi x\
tan|-- - -|
\4 2/
$$\frac{\left(\sin{\left (x \right )} + 1\right) \sin{\left (x \right )}}{\tan{\left (- \frac{x}{2} + \frac{\pi}{4} \right )}}$$
(1 + sin(x))*sin(x)
-------------------
/x pi\
cot|- + --|
\2 4 /
$$\frac{\left(\sin{\left (x \right )} + 1\right) \sin{\left (x \right )}}{\cot{\left (\frac{x}{2} + \frac{\pi}{4} \right )}}$$
2
sin (x) + sin(x)
----------------
/x pi\
cot|- + --|
\2 4 /
$$\frac{\sin^{2}{\left (x \right )} + \sin{\left (x \right )}}{\cot{\left (\frac{x}{2} + \frac{\pi}{4} \right )}}$$
Тригонометрическая часть
[src] /x pi\
(1 + sin(x))*sin(x)*tan|- + --|
\2 4 /
$$\left(\sin{\left (x \right )} + 1\right) \sin{\left (x \right )} \tan{\left (\frac{x}{2} + \frac{\pi}{4} \right )}$$
/ /x\\
-(1 + sin(x))*|1 + tan|-||*sin(x)
\ \2//
----------------------------------
/x\
-1 + tan|-|
\2/
$$- \frac{\sin{\left (x \right )}}{\tan{\left (\frac{x}{2} \right )} - 1} \left(\sin{\left (x \right )} + 1\right) \left(\tan{\left (\frac{x}{2} \right )} + 1\right)$$