/a pi\
(1 - sin(a))*tan|- + --|
\2 4 /
------------------------
cos(a)
$$\frac{\tan{\left (\frac{a}{2} + \frac{\pi}{4} \right )}}{\cos{\left (a \right )}} \left(- \sin{\left (a \right )} + 1\right)$$
(1.0 - sin(a))*tan(pi/4 + a/2)/cos(a)
Рациональный знаменатель
[src] /pi a\
(1 - sin(a))*tan|-- + -|
\4 2/
------------------------
cos(a)
$$\frac{\tan{\left (\frac{a}{2} + \frac{\pi}{4} \right )}}{\cos{\left (a \right )}} \left(- \sin{\left (a \right )} + 1\right)$$
Объединение рациональных выражений
[src] /pi + 2*a\
(1 - sin(a))*tan|--------|
\ 4 /
--------------------------
cos(a)
$$\frac{\tan{\left (\frac{1}{4} \left(2 a + \pi\right) \right )}}{\cos{\left (a \right )}} \left(- \sin{\left (a \right )} + 1\right)$$
/a pi\
-(-1 + sin(a))*tan|- + --|
\2 4 /
---------------------------
cos(a)
$$- \frac{\tan{\left (\frac{a}{2} + \frac{\pi}{4} \right )}}{\cos{\left (a \right )}} \left(\sin{\left (a \right )} - 1\right)$$
/pi a\
(1 - sin(a))*tan|-- + -|
\4 2/
------------------------
cos(a)
$$\frac{\tan{\left (\frac{a}{2} + \frac{\pi}{4} \right )}}{\cos{\left (a \right )}} \left(- \sin{\left (a \right )} + 1\right)$$
/a pi\
(1 - sin(a))*sec(a)*tan|- + --|
\2 4 /
$$\left(- \sin{\left (a \right )} + 1\right) \tan{\left (\frac{a}{2} + \frac{\pi}{4} \right )} \sec{\left (a \right )}$$
/ /a pi\ /a pi\\
-|- tan|- + --| + sin(a)*tan|- + --||
\ \2 4 / \2 4 //
--------------------------------------
cos(a)
$$- \frac{1}{\cos{\left (a \right )}} \left(\sin{\left (a \right )} \tan{\left (\frac{a}{2} + \frac{\pi}{4} \right )} - \tan{\left (\frac{a}{2} + \frac{\pi}{4} \right )}\right)$$
Тригонометрическая часть
[src]/ 1 \ /pi a\
|------ - tan(a)|*tan|-- + -|
\cos(a) / \4 2/
$$\left(- \tan{\left (a \right )} + \frac{1}{\cos{\left (a \right )}}\right) \tan{\left (\frac{a}{2} + \frac{\pi}{4} \right )}$$
/a pi\
-(-1 + sin(a))*tan|- + --|
\2 4 /
---------------------------
cos(a)
$$- \frac{\tan{\left (\frac{a}{2} + \frac{\pi}{4} \right )}}{\cos{\left (a \right )}} \left(\sin{\left (a \right )} - 1\right)$$
/ /a\\
(1 - sin(a))*|1 + tan|-||
\ \2//
-------------------------
/ /a\\
|1 - tan|-||*cos(a)
\ \2//
$$\frac{\left(- \sin{\left (a \right )} + 1\right) \left(\tan{\left (\frac{a}{2} \right )} + 1\right)}{\left(- \tan{\left (\frac{a}{2} \right )} + 1\right) \cos{\left (a \right )}}$$