1
-------------
log(-2 + 2*x) / 1 log(-1 + x) \
(-1 + x) *|---------------------- - -----------------------|
|(-1 + x)*log(-2 + 2*x) 2 |
\ (-1 + x)*log (-2 + 2*x)/$$\left(x - 1\right)^{\frac{1}{\log{\left (2 x - 2 \right )}}} \left(- \frac{\log{\left (x - 1 \right )}}{\left(x - 1\right) \log^{2}{\left (2 x - 2 \right )}} + \frac{1}{\left(x - 1\right) \log{\left (2 x - 2 \right )}}\right)$$
(-1.0 + x)^(1/log(2*(x - 1)))*(1/((-1.0 + x)*log(2*(x - 1))) - log(x - 1)/((-1.0 + x)*log(2*(x - 1))^2))
Рациональный знаменатель
[src] 1 1 1 1
-2 + ------------- -2 + ------------- -2 + ------------- -2 + -------------
log(-2 + 2*x) 2 log(-2 + 2*x) 2 log(-2 + 2*x) log(-2 + 2*x)
- (-1 + x) *log (-2 + 2*x) + x*(-1 + x) *log (-2 + 2*x) + (-1 + x) *log(-1 + x)*log(-2 + 2*x) - x*(-1 + x) *log(-1 + x)*log(-2 + 2*x)
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
3
log (-2 + 2*x) $$\frac{1}{\log^{3}{\left (2 x - 2 \right )}} \left(- x \left(x - 1\right)^{-2 + \frac{1}{\log{\left (2 x - 2 \right )}}} \log{\left (x - 1 \right )} \log{\left (2 x - 2 \right )} + x \left(x - 1\right)^{-2 + \frac{1}{\log{\left (2 x - 2 \right )}}} \log^{2}{\left (2 x - 2 \right )} + \left(x - 1\right)^{-2 + \frac{1}{\log{\left (2 x - 2 \right )}}} \log{\left (x - 1 \right )} \log{\left (2 x - 2 \right )} - \left(x - 1\right)^{-2 + \frac{1}{\log{\left (2 x - 2 \right )}}} \log^{2}{\left (2 x - 2 \right )}\right)$$
Объединение рациональных выражений
[src] 1
-------------
log(-2 + 2*x)
(-1 + x) *(-log(-1 + x) + log(-2 + 2*x))
----------------------------------------------------
2
(-1 + x)*log (-2 + 2*x) $$\frac{\left(x - 1\right)^{\frac{1}{\log{\left (2 x - 2 \right )}}}}{\left(x - 1\right) \log^{2}{\left (2 x - 2 \right )}} \left(- \log{\left (x - 1 \right )} + \log{\left (2 x - 2 \right )}\right)$$
1 - 2*log(2) - 2*log(-1 + x)
1 + ----------------------------
log(2) + log(-1 + x)
(-1 + x) *log(2)
-----------------------------------------------
2
(log(2) + log(-1 + x)) $$\frac{\log{\left (2 \right )}}{\left(\log{\left (x - 1 \right )} + \log{\left (2 \right )}\right)^{2}} \left(x - 1\right)^{1 + \frac{- 2 \log{\left (x - 1 \right )} - 2 \log{\left (2 \right )} + 1}{\log{\left (x - 1 \right )} + \log{\left (2 \right )}}}$$
1
-------------
log(-2 + 2*x) / 3 \
-(-1 + x) *\-1 + log (-2 + 2*x)*log(-1 + x)/
---------------------------------------------------------
-log(-2 + 2*x) + x*log(-2 + 2*x) $$- \frac{\left(x - 1\right)^{\frac{1}{\log{\left (2 x - 2 \right )}}} \left(\log{\left (x - 1 \right )} \log^{3}{\left (2 x - 2 \right )} - 1\right)}{x \log{\left (2 x - 2 \right )} - \log{\left (2 x - 2 \right )}}$$
1
--------------
log(2*(x - 1)) / 1 log(x - 1) \
(-1 + x) *|---------------------- - -----------------------|
|(x - 1)*log(2*(x - 1)) 2 |
\ (x - 1)*log (2*(x - 1))/$$\left(x - 1\right)^{\frac{1}{\log{\left (2 \left(x - 1\right) \right )}}} \left(\frac{1}{\left(x - 1\right) \log{\left (2 \left(x - 1\right) \right )}} - \frac{1}{\left(x - 1\right) \log^{2}{\left (2 \left(x - 1\right) \right )}} \log{\left (x - 1 \right )}\right)$$
1
-------------
log(-2 + 2*x)
(-1 + x) *(-log(-1 + x) + log(-2 + 2*x))
----------------------------------------------------
2
(-1 + x)*log (-2 + 2*x) $$\frac{\left(x - 1\right)^{\frac{1}{\log{\left (2 x - 2 \right )}}}}{\left(x - 1\right) \log^{2}{\left (2 x - 2 \right )}} \left(- \log{\left (x - 1 \right )} + \log{\left (2 x - 2 \right )}\right)$$
1
--------------------
log(2) + log(-1 + x)
(-1 + x) *log(2)
-----------------------------------------------------------------------------------------------------
2 2 2 2
- log (2) - log (-1 + x) + x*log (2) + x*log (-1 + x) - 2*log(2)*log(-1 + x) + 2*x*log(2)*log(-1 + x)$$\frac{\left(x - 1\right)^{\frac{1}{\log{\left (x - 1 \right )} + \log{\left (2 \right )}}} \log{\left (2 \right )}}{x \log^{2}{\left (x - 1 \right )} + 2 x \log{\left (2 \right )} \log{\left (x - 1 \right )} + x \log^{2}{\left (2 \right )} - \log^{2}{\left (x - 1 \right )} - 2 \log{\left (2 \right )} \log{\left (x - 1 \right )} - \log^{2}{\left (2 \right )}}$$
1
--------------
log(2*(x - 1)) / 1 log(x - 1) \
(x - 1) *|---------------------- - -----------------------|
|(x - 1)*log(2*(x - 1)) 2 |
\ (x - 1)*log (2*(x - 1))/$$\left(x - 1\right)^{\frac{1}{\log{\left (2 \left(x - 1\right) \right )}}} \left(- \frac{\log{\left (x - 1 \right )}}{\left(x - 1\right) \log^{2}{\left (2 \left(x - 1\right) \right )}} + \frac{1}{\left(x - 1\right) \log{\left (2 \left(x - 1\right) \right )}}\right)$$
1
-------------------- / 2 \
log(2) + log(-1 + x) | 1 (log(2) + log(-1 + x)) *log(-1 + x)|
(-1 + x) *|------------------------------- - -----------------------------------|
\(-1 + x)*(log(2) + log(-1 + x)) -1 + x /$$\left(x - 1\right)^{\frac{1}{\log{\left (x - 1 \right )} + \log{\left (2 \right )}}} \left(- \frac{\log{\left (x - 1 \right )}}{x - 1} \left(\log{\left (x - 1 \right )} + \log{\left (2 \right )}\right)^{2} + \frac{1}{\left(x - 1\right) \left(\log{\left (x - 1 \right )} + \log{\left (2 \right )}\right)}\right)$$