Найдите общий знаменатель для дробей 2/x-4-x+8/x^2-16-1/x (2 делить на х минус 4 минус х плюс 8 делить на х в квадрате минус 16 минус 1 делить на х) - найти с решением [Есть ОТВЕТ!]

Общий знаменатель 2/x-4-x+8/x^2-16-1/x

Учитель очень удивится увидев твоё верное решение😉

Выражение, которое надо упростить:

Решение

Вы ввели [src]
2           8         1
- - 4 - x + -- - 16 - -
x            2        x
            x          
$$- x + -4 + \frac{2}{x} + \frac{8}{x^{2}} - 16 - \frac{1}{x}$$
Степени [src]
      1       8 
-20 + - - x + --
      x        2
              x 
$$- x - 20 + \frac{1}{x} + \frac{8}{x^{2}}$$
Численный ответ [src]
-20.0 - x + 1.0/x + 8.0/x^2
Рациональный знаменатель [src]
 3    5       4      2
x  - x  - 20*x  + 8*x 
----------------------
           4          
          x           
$$\frac{1}{x^{4}} \left(- x^{5} - 20 x^{4} + x^{3} + 8 x^{2}\right)$$
Объединение рациональных выражений [src]
            2     /     2      \
8 - x - 16*x  + x*\2 - x  - 4*x/
--------------------------------
                2               
               x                
$$\frac{1}{x^{2}} \left(- 16 x^{2} + x \left(- x^{2} - 4 x + 2\right) - x + 8\right)$$
Общее упрощение [src]
      1       8 
-20 + - - x + --
      x        2
              x 
$$- x - 20 + \frac{1}{x} + \frac{8}{x^{2}}$$
Собрать выражение [src]
      1       8 
-20 + - - x + --
      x        2
              x 
$$- x - 20 + \frac{1}{x} + \frac{8}{x^{2}}$$
Общий знаменатель [src]
          8 + x
-20 - x + -----
             2 
            x  
$$- x - 20 + \frac{1}{x^{2}} \left(x + 8\right)$$
Комбинаторика [src]
 /      3           2\ 
-\-8 + x  - x + 20*x / 
-----------------------
            2          
           x           
$$- \frac{1}{x^{2}} \left(x^{3} + 20 x^{2} - x - 8\right)$$
×

Где учитесь?

Для правильного составления решения, укажите: