График функции y = 1/2*x-1

Функция f() ?

Примеры

Решение

Вы ввели
[LaTeX]
       x    
f(x) = - - 1
       2    
$$f{\left (x \right )} = \frac{x}{2} - 1$$
График функции
[LaTeX]
Точки пересечения с осью координат X
[LaTeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\frac{x}{2} - 1 = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 2$$
Численное решение
$$x_{1} = 2$$
Точки пересечения с осью координат Y
[LaTeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x/2 - 1.
$$-1 + \frac{0}{2}$$
Результат:
$$f{\left (0 \right )} = -1$$
Точка:
(0, -1)
Экстремумы функции
[LaTeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{1}{2} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Горизонтальные асимптоты
[LaTeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\frac{x}{2} - 1\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\frac{x}{2} - 1\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
[LaTeX]
Наклонную асимптоту можно найти, подсчитав предел функции x/2 - 1, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(\frac{x}{2} - 1\right)\right) = \frac{1}{2}$$
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = \frac{x}{2}$$
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(\frac{x}{2} - 1\right)\right) = \frac{1}{2}$$
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = \frac{x}{2}$$
Чётность и нечётность функции
[LaTeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{x}{2} - 1 = - \frac{x}{2} - 1$$
- Нет
$$\frac{x}{2} - 1 = - \frac{-1 x}{2} + 1$$
- Нет
значит, функция
не является
ни чётной ни нечётной