График функции y = sqrt(1-x^2)+1

Функция f() ?

Примеры

Решение

Вы ввели
[LaTeX]
          ________    
         /      2     
f(x) = \/  1 - x   + 1
$$f{\left (x \right )} = \sqrt{- x^{2} + 1} + 1$$
График функции
[LaTeX]
Точки пересечения с осью координат X
[LaTeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\sqrt{- x^{2} + 1} + 1 = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
[LaTeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в sqrt(1 - x^2) + 1.
$$\sqrt{- 0 + 1} + 1$$
Результат:
$$f{\left (0 \right )} = 2$$
Точка:
(0, 2)
Экстремумы функции
[LaTeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- \frac{x}{\sqrt{- x^{2} + 1}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
Зн. экстремумы в точках:
(0, 2)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумы функции в точках:
$$x_{1} = 0$$
Убывает на промежутках
(-oo, 0]

Возрастает на промежутках
[0, oo)
Точки перегибов
[LaTeX]
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$- \frac{\frac{x^{2}}{- x^{2} + 1} + 1}{\sqrt{- x^{2} + 1}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
[LaTeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\sqrt{- x^{2} + 1} + 1\right) = \infty i$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = \infty i$$
$$\lim_{x \to \infty}\left(\sqrt{- x^{2} + 1} + 1\right) = \infty i$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = \infty i$$
Наклонные асимптоты
[LaTeX]
Наклонную асимптоту можно найти, подсчитав предел функции sqrt(1 - x^2) + 1, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(\sqrt{- x^{2} + 1} + 1\right)\right) = - i$$
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = - i x$$
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(\sqrt{- x^{2} + 1} + 1\right)\right) = i$$
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = i x$$
Чётность и нечётность функции
[LaTeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\sqrt{- x^{2} + 1} + 1 = \sqrt{- x^{2} + 1} + 1$$
- Да
$$\sqrt{- x^{2} + 1} + 1 = - \sqrt{- x^{2} + 1} - 1$$
- Нет
значит, функция
является
чётной