График функции y = x^3+3*x^2+3*x-1

Функция f() ?

Примеры

Решение

Вы ввели
[LaTeX]
        3      2          
f(x) = x  + 3*x  + 3*x - 1
$$f{\left (x \right )} = 3 x + x^{3} + 3 x^{2} - 1$$
График функции
[LaTeX]
Точки пересечения с осью координат X
[LaTeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$3 x + x^{3} + 3 x^{2} - 1 = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = -1 + \sqrt[3]{2}$$
Численное решение
$$x_{1} = 0.259921049895$$
Точки пересечения с осью координат Y
[LaTeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^3 + 3*x^2 + 3*x - 1.
$$-1 + 0^{3} + 3 \cdot 0^{2} + 0 \cdot 3$$
Результат:
$$f{\left (0 \right )} = -1$$
Точка:
(0, -1)
Экстремумы функции
[LaTeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$3 x^{2} + 6 x + 3 = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = -1$$
Зн. экстремумы в точках:
(-1, -2)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумов у функции нет
Убывает на всей числовой оси
Точки перегибов
[LaTeX]
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$6 \left(x + 1\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = -1$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[-1, oo)

Выпуклая на промежутках
(-oo, -1]
Горизонтальные асимптоты
[LaTeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(3 x + x^{3} + 3 x^{2} - 1\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(3 x + x^{3} + 3 x^{2} - 1\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
[LaTeX]
Наклонную асимптоту можно найти, подсчитав предел функции x^3 + 3*x^2 + 3*x - 1, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(3 x + x^{3} + 3 x^{2} - 1\right)\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(3 x + x^{3} + 3 x^{2} - 1\right)\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
[LaTeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$3 x + x^{3} + 3 x^{2} - 1 = - x^{3} + 3 x^{2} - 3 x - 1$$
- Нет
$$3 x + x^{3} + 3 x^{2} - 1 = - -1 x^{3} - 3 x^{2} - - 3 x + 1$$
- Нет
значит, функция
не является
ни чётной ни нечётной