График функции y = 1/3*(3-x)*x^(1/2)

Функция f() ?

Примеры

График:

от до

Точки пересечения:

показывать?

Решение

Вы ввели
[TeX]
[pretty]
[text]
       3 - x   ___
f(x) = -----*\/ x 
         3        
$$f{\left (x \right )} = \sqrt{x} \frac{1}{3} \left(- x + 3\right)$$
График функции
Точки пересечения с осью координат X
[TeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\sqrt{x} \frac{1}{3} \left(- x + 3\right) = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
$$x_{2} = 3$$
Численное решение
$$x_{1} = 0$$
$$x_{2} = 3$$
Точки пересечения с осью координат Y
[TeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в ((3 - x)/3)*sqrt(x).
$$\sqrt{0} \frac{1}{3} \left(- 0 + 3\right)$$
Результат:
$$f{\left (0 \right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
[TeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- \frac{\sqrt{x}}{3} + \frac{- x + 3}{6 \sqrt{x}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 1$$
Зн. экстремумы в точках:
(1, 2/3)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумы функции в точках:
$$x_{1} = 1$$
Убывает на промежутках
(-oo, 1]

Возрастает на промежутках
[1, oo)
Точки перегибов
[TeX]
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{1}{12 \sqrt{x}} \left(-4 + \frac{1}{x} \left(x - 3\right)\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = -1$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Не имеет изгибов на всей числовой оси
Горизонтальные асимптоты
[TeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\sqrt{x} \frac{1}{3} \left(- x + 3\right)\right) = \infty i$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = \infty i$$
$$\lim_{x \to \infty}\left(\sqrt{x} \frac{1}{3} \left(- x + 3\right)\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
[TeX]
Наклонную асимптоту можно найти, подсчитав предел функции ((3 - x)/3)*sqrt(x), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{- x + 3}{3 \sqrt{x}}\right) = - \infty i$$
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = - \infty i x$$
$$\lim_{x \to \infty}\left(\frac{- x + 3}{3 \sqrt{x}}\right) = -\infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
[TeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\sqrt{x} \frac{1}{3} \left(- x + 3\right) = \sqrt{- x} \left(\frac{x}{3} + 1\right)$$
- Нет
$$\sqrt{x} \frac{1}{3} \left(- x + 3\right) = - \sqrt{- x} \left(\frac{x}{3} + 1\right)$$
- Нет
значит, функция
не является
ни чётной ни нечётной