График функции y = (2-3*x)/x^2

Функция f() ?

Примеры

График:

от до

Точки пересечения:

Решение

Вы ввели
[TeX]
[pretty]
[text]
       2 - 3*x
f(x) = -------
           2  
          x   
$$f{\left (x \right )} = \frac{1}{x^{2}} \left(- 3 x + 2\right)$$
График функции
Область определения функции
[TeX]
Точки, в которых функция точно неопределена:
$$x_{1} = 0$$
Точки пересечения с осью координат X
[TeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\frac{1}{x^{2}} \left(- 3 x + 2\right) = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = \frac{2}{3}$$
Численное решение
$$x_{1} = 0.666666666667$$
Точки пересечения с осью координат Y
[TeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (2 - 3*x)/x^2.
$$\frac{1}{0^{2}} \left(- 0 + 2\right)$$
Результат:
$$f{\left (0 \right )} = \tilde{\infty}$$
зн.f не пересекает Y
Экстремумы функции
[TeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- \frac{3}{x^{2}} - \frac{1}{x^{3}} \left(- 6 x + 4\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = \frac{4}{3}$$
Зн. экстремумы в точках:
(4/3, -9/8)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{1} = \frac{4}{3}$$
Максимумов у функции нет
Убывает на промежутках
[4/3, oo)

Возрастает на промежутках
(-oo, 4/3]
Точки перегибов
[TeX]
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{1}{x^{3}} \left(12 + \frac{1}{x} \left(- 18 x + 12\right)\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 2$$
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
$$x_{1} = 0$$

$$\lim_{x \to 0^-}\left(\frac{1}{x^{3}} \left(12 + \frac{1}{x} \left(- 18 x + 12\right)\right)\right) = \infty$$
$$\lim_{x \to 0^+}\left(\frac{1}{x^{3}} \left(12 + \frac{1}{x} \left(- 18 x + 12\right)\right)\right) = \infty$$
- пределы равны, зн. пропускаем соотв. точку

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 2]

Выпуклая на промежутках
[2, oo)
Вертикальные асимптоты
[TeX]
Есть:
$$x_{1} = 0$$
Горизонтальные асимптоты
[TeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x^{2}} \left(- 3 x + 2\right)\right) = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = 0$$
$$\lim_{x \to \infty}\left(\frac{1}{x^{2}} \left(- 3 x + 2\right)\right) = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = 0$$
Наклонные асимптоты
[TeX]
Наклонную асимптоту можно найти, подсчитав предел функции (2 - 3*x)/x^2, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x^{3}} \left(- 3 x + 2\right)\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{1}{x^{3}} \left(- 3 x + 2\right)\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
[TeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{1}{x^{2}} \left(- 3 x + 2\right) = \frac{1}{x^{2}} \left(3 x + 2\right)$$
- Нет
$$\frac{1}{x^{2}} \left(- 3 x + 2\right) = - \frac{1}{x^{2}} \left(3 x + 2\right)$$
- Нет
значит, функция
не является
ни чётной ни нечётной