Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная$$- \sin{\left (x \right )} + \frac{1}{\sin{\left (x \right )}} + \frac{2 \cos^{2}{\left (x \right )}}{\sin^{3}{\left (x \right )}} = 0$$
Решаем это уравнениеКорни этого ур-ния
$$x_{1} = - \frac{\pi}{2}$$
$$x_{2} = \frac{\pi}{2}$$
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
$$x_{1} = 0$$
$$x_{2} = 3.14159265358979$$
$$\lim_{x \to 0^-}\left(- \sin{\left (x \right )} + \frac{1}{\sin{\left (x \right )}} + \frac{2 \cos^{2}{\left (x \right )}}{\sin^{3}{\left (x \right )}}\right) = -\infty$$
$$\lim_{x \to 0^+}\left(- \sin{\left (x \right )} + \frac{1}{\sin{\left (x \right )}} + \frac{2 \cos^{2}{\left (x \right )}}{\sin^{3}{\left (x \right )}}\right) = \infty$$
- пределы не равны, зн.
$$x_{1} = 0$$
- является точкой перегиба
$$\lim_{x \to 3.14159265358979^-}\left(- \sin{\left (x \right )} + \frac{1}{\sin{\left (x \right )}} + \frac{2 \cos^{2}{\left (x \right )}}{\sin^{3}{\left (x \right )}}\right) = 1.08892367577758 \cdot 10^{48}$$
$$\lim_{x \to 3.14159265358979^+}\left(- \sin{\left (x \right )} + \frac{1}{\sin{\left (x \right )}} + \frac{2 \cos^{2}{\left (x \right )}}{\sin^{3}{\left (x \right )}}\right) = 1.08892367577758 \cdot 10^{48}$$
- пределы равны, зн. пропускаем соотв. точку
Интервалы выпуклости и вогнутости:Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Выпуклая на всей числовой оси