Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
вторая производная$$\frac{x \left(- \frac{3 x^{2}}{x^{2} - 1} + 3\right)}{\left(1 - x^{2}\right)^{\frac{3}{2}}} = 0$$
Решаем это уравнениеКорни этого ур-ния
$$x_{1} = 0$$
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
$$x_{1} = -1$$
$$x_{2} = 1$$
$$\lim_{x \to -1^-}\left(\frac{x \left(- \frac{3 x^{2}}{x^{2} - 1} + 3\right)}{\left(1 - x^{2}\right)^{\frac{3}{2}}}\right) = \infty i$$
$$\lim_{x \to -1^+}\left(\frac{x \left(- \frac{3 x^{2}}{x^{2} - 1} + 3\right)}{\left(1 - x^{2}\right)^{\frac{3}{2}}}\right) = -\infty$$
- пределы не равны, зн.
$$x_{1} = -1$$
- является точкой перегиба
$$\lim_{x \to 1^-}\left(\frac{x \left(- \frac{3 x^{2}}{x^{2} - 1} + 3\right)}{\left(1 - x^{2}\right)^{\frac{3}{2}}}\right) = \infty$$
$$\lim_{x \to 1^+}\left(\frac{x \left(- \frac{3 x^{2}}{x^{2} - 1} + 3\right)}{\left(1 - x^{2}\right)^{\frac{3}{2}}}\right) = - \infty i$$
- пределы не равны, зн.
$$x_{2} = 1$$
- является точкой перегиба
Интервалы выпуклости и вогнутости:Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
$$\left[0, \infty\right)$$
Выпуклая на промежутках
$$\left(-\infty, 0\right]$$