График функции y = 5/4+x+2

Функция f() ?

Примеры

Решение

Вы ввели
[LaTeX]
f(x) = 5/4 + x + 2
$$f{\left (x \right )} = x + \frac{5}{4} + 2$$
График функции
[LaTeX]
Точки пересечения с осью координат X
[LaTeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x + \frac{5}{4} + 2 = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = - \frac{13}{4}$$
Численное решение
$$x_{1} = -3.25$$
Точки пересечения с осью координат Y
[LaTeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 5/4 + x + 2.
$$\frac{5}{4} + 2$$
Результат:
$$f{\left (0 \right )} = \frac{13}{4}$$
Точка:
(0, 13/4)
Экстремумы функции
[LaTeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$1 = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Горизонтальные асимптоты
[LaTeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(x + \frac{5}{4} + 2\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(x + \frac{5}{4} + 2\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
[LaTeX]
Наклонную асимптоту можно найти, подсчитав предел функции 5/4 + x + 2, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(x + \frac{5}{4} + 2\right)\right) = 1$$
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = x$$
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(x + \frac{5}{4} + 2\right)\right) = 1$$
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = x$$
Чётность и нечётность функции
[LaTeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x + \frac{5}{4} + 2 = - x + \frac{13}{4}$$
- Нет
$$x + \frac{5}{4} + 2 = - -1 x - \frac{13}{4}$$
- Нет
значит, функция
не является
ни чётной ни нечётной