График функции y = x^2-x-6

Функция f() ?

Примеры

График:

от до

Точки пересечения:

показывать?

Решение

Вы ввели
[TeX]
[pretty]
[text]
        2        
f(x) = x  - x - 6
$$f{\left (x \right )} = x^{2} - x - 6$$
График функции
Точки пересечения с осью координат X
[TeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x^{2} - x - 6 = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = -2$$
$$x_{2} = 3$$
Численное решение
$$x_{1} = -2$$
$$x_{2} = 3$$
Точки пересечения с осью координат Y
[TeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^2 - x - 6.
$$-6 + 0^{2} - 0$$
Результат:
$$f{\left (0 \right )} = -6$$
Точка:
(0, -6)
Экстремумы функции
[TeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$2 x - 1 = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = \frac{1}{2}$$
Зн. экстремумы в точках:
(1/2, -25/4)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{1} = \frac{1}{2}$$
Максимумов у функции нет
Убывает на промежутках
[1/2, oo)

Возрастает на промежутках
(-oo, 1/2]
Точки перегибов
[TeX]
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$2 = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
[TeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(x^{2} - x - 6\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(x^{2} - x - 6\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
[TeX]
Наклонную асимптоту можно найти, подсчитав предел функции x^2 - x - 6, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(x^{2} - x - 6\right)\right) = -\infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(x^{2} - x - 6\right)\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
[TeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x^{2} - x - 6 = x^{2} + x - 6$$
- Нет
$$x^{2} - x - 6 = - x^{2} - x + 6$$
- Нет
значит, функция
не является
ни чётной ни нечётной