График функции y = (x^3-27*x+54)/(x^3)^1

Функция f() ?

Примеры

Решение

Вы ввели
[LaTeX]
        3            
       x  - 27*x + 54
f(x) = --------------
               1     
           / 3\      
           \x /      
$$f{\left (x \right )} = \frac{1}{\left(x^{3}\right)^{1}} \left(x^{3} - 27 x + 54\right)$$
График функции
[LaTeX]
Область определения функции
[LaTeX]
Точки, в которых функция точно неопределена:
$$x_{1} = 0$$
Точки пересечения с осью координат X
[LaTeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\frac{1}{\left(x^{3}\right)^{1}} \left(x^{3} - 27 x + 54\right) = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = -6$$
$$x_{2} = 3$$
Численное решение
$$x_{1} = -6$$
$$x_{2} = 2.99999965568$$
Точки пересечения с осью координат Y
[LaTeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (x^3 - 27*x + 54)/(x^3)^1.
$$\frac{1}{\left(0^{3}\right)^{1}} \left(0^{3} - 0 + 54\right)$$
Результат:
$$f{\left (0 \right )} = \tilde{\infty}$$
зн.f не пересекает Y
Экстремумы функции
[LaTeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{1}{x^{3}} \left(3 x^{2} - 27\right) - \frac{1}{x^{4}} \left(3 \left(x^{3} - 27 x\right) + 162\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 3$$
Зн. экстремумы в точках:
(3, 0)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{1} = 3$$
Максимумов у функции нет
Убывает на промежутках
[3, oo)

Возрастает на промежутках
(-oo, 3]
Точки перегибов
[LaTeX]
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{1}{x^{2}} \left(6 - \frac{1}{x^{2}} \left(18 x^{2} - 162\right) + \frac{1}{x^{3}} \left(12 x^{3} - 324 x + 648\right)\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 4$$
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
$$x_{1} = 0$$

$$\lim_{x \to 0^-}\left(\frac{1}{x^{2}} \left(6 - \frac{1}{x^{2}} \left(18 x^{2} - 162\right) + \frac{1}{x^{3}} \left(12 x^{3} - 324 x + 648\right)\right)\right) = -\infty$$
$$\lim_{x \to 0^+}\left(\frac{1}{x^{2}} \left(6 - \frac{1}{x^{2}} \left(18 x^{2} - 162\right) + \frac{1}{x^{3}} \left(12 x^{3} - 324 x + 648\right)\right)\right) = \infty$$
- пределы не равны, зн.
$$x_{1} = 0$$
- является точкой перегиба

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 4]

Выпуклая на промежутках
[4, oo)
Вертикальные асимптоты
[LaTeX]
Есть:
$$x_{1} = 0$$
Горизонтальные асимптоты
[LaTeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{\left(x^{3}\right)^{1}} \left(x^{3} - 27 x + 54\right)\right) = 1$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = 1$$
$$\lim_{x \to \infty}\left(\frac{1}{\left(x^{3}\right)^{1}} \left(x^{3} - 27 x + 54\right)\right) = 1$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = 1$$
Наклонные асимптоты
[LaTeX]
Наклонную асимптоту можно найти, подсчитав предел функции (x^3 - 27*x + 54)/(x^3)^1, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x^{4}} \left(x^{3} - 27 x + 54\right)\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{1}{x^{4}} \left(x^{3} - 27 x + 54\right)\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
[LaTeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{1}{\left(x^{3}\right)^{1}} \left(x^{3} - 27 x + 54\right) = - \frac{1}{x^{3}} \left(- x^{3} + 27 x + 54\right)$$
- Нет
$$\frac{1}{\left(x^{3}\right)^{1}} \left(x^{3} - 27 x + 54\right) = - \frac{1}{x^{3}} \left(x^{3} - 27 x - 54\right)$$
- Нет
значит, функция
не является
ни чётной ни нечётной