График функции y = x^4/4+x^3/3-x^2-2*x+3

Функция f() ?

Примеры

Решение

Вы ввели
[LaTeX]
        4    3               
       x    x     2          
f(x) = -- + -- - x  - 2*x + 3
       4    3                
$$f{\left (x \right )} = - 2 x + - x^{2} + \frac{x^{4}}{4} + \frac{x^{3}}{3} + 3$$
График функции
[LaTeX]
Точки пересечения с осью координат X
[LaTeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$- 2 x + - x^{2} + \frac{x^{4}}{4} + \frac{x^{3}}{3} + 3 = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
[LaTeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^4/4 + x^3/3 - x^2 - 2*x + 3.
$$\frac{0^{4}}{4} + \frac{0^{3}}{3} - 0 - 0 + 3$$
Результат:
$$f{\left (0 \right )} = 3$$
Точка:
(0, 3)
Экстремумы функции
[LaTeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$x^{3} + x^{2} - 2 x - 2 = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = -1$$
$$x_{2} = - \sqrt{2}$$
$$x_{3} = \sqrt{2}$$
Зн. экстремумы в точках:
     47 
(-1, --)
     12 

                 ___ 
    ___      4*\/ 2  
(-\/ 2, 2 + -------)
                3    

                ___ 
   ___      4*\/ 2  
(\/ 2, 2 - -------)
               3    


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{3} = - \sqrt{2}$$
$$x_{3} = \sqrt{2}$$
Максимумы функции в точках:
$$x_{3} = -1$$
Убывает на промежутках
[-sqrt(2), -1] U [sqrt(2), oo)

Возрастает на промежутках
(-oo, -sqrt(2)] U [-1, sqrt(2)]
Точки перегибов
[LaTeX]
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$3 x^{2} + 2 x - 2 = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = - \frac{1}{3} + \frac{\sqrt{7}}{3}$$
$$x_{2} = - \frac{\sqrt{7}}{3} - \frac{1}{3}$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, -sqrt(7)/3 - 1/3] U [-1/3 + sqrt(7)/3, oo)

Выпуклая на промежутках
[-sqrt(7)/3 - 1/3, -1/3 + sqrt(7)/3]
Горизонтальные асимптоты
[LaTeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(- 2 x + - x^{2} + \frac{x^{4}}{4} + \frac{x^{3}}{3} + 3\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(- 2 x + - x^{2} + \frac{x^{4}}{4} + \frac{x^{3}}{3} + 3\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
[LaTeX]
Наклонную асимптоту можно найти, подсчитав предел функции x^4/4 + x^3/3 - x^2 - 2*x + 3, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(- 2 x + - x^{2} + \frac{x^{4}}{4} + \frac{x^{3}}{3} + 3\right)\right) = -\infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(- 2 x + - x^{2} + \frac{x^{4}}{4} + \frac{x^{3}}{3} + 3\right)\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
[LaTeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$- 2 x + - x^{2} + \frac{x^{4}}{4} + \frac{x^{3}}{3} + 3 = \frac{x^{4}}{4} - \frac{x^{3}}{3} - x^{2} + 2 x + 3$$
- Нет
$$- 2 x + - x^{2} + \frac{x^{4}}{4} + \frac{x^{3}}{3} + 3 = - \frac{x^{4}}{4} - - \frac{x^{3}}{3} - - x^{2} - 2 x - 3$$
- Нет
значит, функция
не является
ни чётной ни нечётной