График функции y = (x-1)/(sqrt(x))

Функция f() ?

Примеры

Решение

Вы ввели
[LaTeX]
       x - 1
f(x) = -----
         ___
       \/ x 
$$f{\left (x \right )} = \frac{1}{\sqrt{x}} \left(x - 1\right)$$
График функции
[LaTeX]
Область определения функции
[LaTeX]
Точки, в которых функция точно неопределена:
$$x_{1} = 0$$
Точки пересечения с осью координат X
[LaTeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\frac{1}{\sqrt{x}} \left(x - 1\right) = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 1$$
Численное решение
$$x_{1} = 1$$
Точки пересечения с осью координат Y
[LaTeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (x - 1)/sqrt(x).
$$- \tilde{\infty}$$
Результат:
$$f{\left (0 \right )} = \tilde{\infty}$$
зн.f не пересекает Y
Экстремумы функции
[LaTeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{1}{\sqrt{x}} - \frac{x - 1}{2 x^{\frac{3}{2}}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = -1$$
Зн. экстремумы в точках:
(-1, 2*I)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумов у функции нет
Не изменяет значения на всей числовой оси
Точки перегибов
[LaTeX]
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{1}{x^{\frac{3}{2}}} \left(-1 + \frac{3 x - 3}{4 x}\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = -3$$
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
$$x_{1} = 0$$

$$\lim_{x \to 0^-}\left(\frac{1}{x^{\frac{3}{2}}} \left(-1 + \frac{3 x - 3}{4 x}\right)\right) = \infty i$$
$$\lim_{x \to 0^+}\left(\frac{1}{x^{\frac{3}{2}}} \left(-1 + \frac{3 x - 3}{4 x}\right)\right) = -\infty$$
- пределы не равны, зн.
$$x_{1} = 0$$
- является точкой перегиба

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Не имеет изгибов на всей числовой оси
Вертикальные асимптоты
[LaTeX]
Есть:
$$x_{1} = 0$$
Горизонтальные асимптоты
[LaTeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{\sqrt{x}} \left(x - 1\right)\right) = \infty i$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = \infty i$$
$$\lim_{x \to \infty}\left(\frac{1}{\sqrt{x}} \left(x - 1\right)\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
[LaTeX]
Наклонную асимптоту можно найти, подсчитав предел функции (x - 1)/sqrt(x), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x^{\frac{3}{2}}} \left(x - 1\right)\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{1}{x^{\frac{3}{2}}} \left(x - 1\right)\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
[LaTeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{1}{\sqrt{x}} \left(x - 1\right) = \frac{- x - 1}{\sqrt{- x}}$$
- Нет
$$\frac{1}{\sqrt{x}} \left(x - 1\right) = - \frac{- x - 1}{\sqrt{- x}}$$
- Нет
значит, функция
не является
ни чётной ни нечётной