График функции y = log(x^2+5)

Функция f() ?

Примеры

Решение

Вы ввели
[LaTeX]
          / 2    \
f(x) = log\x  + 5/
$$f{\left (x \right )} = \log{\left (x^{2} + 5 \right )}$$
График функции
[LaTeX]
Точки пересечения с осью координат X
[LaTeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\log{\left (x^{2} + 5 \right )} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
[LaTeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в log(x^2 + 5).
$$\log{\left (0^{2} + 5 \right )}$$
Результат:
$$f{\left (0 \right )} = \log{\left (5 \right )}$$
Точка:
(0, log(5))
Экстремумы функции
[LaTeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{2 x}{x^{2} + 5} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
Зн. экстремумы в точках:
(0, log(5))


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{1} = 0$$
Максимумов у функции нет
Убывает на промежутках
[0, oo)

Возрастает на промежутках
(-oo, 0]
Точки перегибов
[LaTeX]
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{1}{x^{2} + 5} \left(- \frac{4 x^{2}}{x^{2} + 5} + 2\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = - \sqrt{5}$$
$$x_{2} = \sqrt{5}$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[-sqrt(5), sqrt(5)]

Выпуклая на промежутках
(-oo, -sqrt(5)] U [sqrt(5), oo)
Горизонтальные асимптоты
[LaTeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty} \log{\left (x^{2} + 5 \right )} = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty} \log{\left (x^{2} + 5 \right )} = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
[LaTeX]
Наклонную асимптоту можно найти, подсчитав предел функции log(x^2 + 5), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \log{\left (x^{2} + 5 \right )}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{1}{x} \log{\left (x^{2} + 5 \right )}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
[LaTeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\log{\left (x^{2} + 5 \right )} = \log{\left (x^{2} + 5 \right )}$$
- Да
$$\log{\left (x^{2} + 5 \right )} = - \log{\left (x^{2} + 5 \right )}$$
- Нет
значит, функция
является
чётной