График функции пересекает ось X при f = 0 значит надо решить уравнение: $$\log{\left(\frac{3}{10} \right)}^{x} = 0$$ Решаем это уравнение Решения не найдено, может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в log(3/10)^x. $$\log{\left(\frac{3}{10} \right)}^{0}$$ Результат: $$f{\left(0 \right)} = 1$$ Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение $$\frac{d}{d x} f{\left(x \right)} = 0$$ (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: $$\frac{d}{d x} f{\left(x \right)} = $$ первая производная $$\left(\log{\left(- \log{\left(\frac{3}{10} \right)} \right)} + i \pi\right) \log{\left(\frac{3}{10} \right)}^{x} = 0$$ Решаем это уравнение Решения не найдены, возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение $$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$ (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: $$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$ вторая производная $$\left(\log{\left(- \log{\left(\frac{3}{10} \right)} \right)} + i \pi\right)^{2} \log{\left(\frac{3}{10} \right)}^{x} = 0$$ Решаем это уравнение Решения не найдены, возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo $$\lim_{x \to -\infty} \log{\left(\frac{3}{10} \right)}^{x} = 0$$ Возьмём предел значит, уравнение горизонтальной асимптоты слева: $$y = 0$$ $$\lim_{x \to \infty} \log{\left(\frac{3}{10} \right)}^{x} = \tilde{\infty}$$ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции log(3/10)^x, делённой на x при x->+oo и x ->-oo Предел слева не удалось вычислить $$\lim_{x \to -\infty}\left(\frac{\log{\left(\frac{3}{10} \right)}^{x}}{x}\right)$$ Предел справа не удалось вычислить $$\lim_{x \to \infty}\left(\frac{\log{\left(\frac{3}{10} \right)}^{x}}{x}\right)$$
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: $$\log{\left(\frac{3}{10} \right)}^{x} = \log{\left(\frac{3}{10} \right)}^{- x}$$ - Нет $$\log{\left(\frac{3}{10} \right)}^{x} = - \log{\left(\frac{3}{10} \right)}^{- x}$$ - Нет значит, функция не является ни чётной ни нечётной