График функции y = sqrt(x-x^2)

Функция f() ?

Примеры

График:

от до

Точки пересечения:

Решение

Вы ввели
[TeX]
[pretty]
[text]
          ________
         /      2 
f(x) = \/  x - x  
$$f{\left (x \right )} = \sqrt{- x^{2} + x}$$
График функции
Точки пересечения с осью координат X
[TeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\sqrt{- x^{2} + x} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
$$x_{2} = 1$$
Численное решение
$$x_{1} = 0$$
$$x_{2} = 1$$
Точки пересечения с осью координат Y
[TeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в sqrt(x - x^2).
$$\sqrt{- 0}$$
Результат:
$$f{\left (0 \right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
[TeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{- x + \frac{1}{2}}{\sqrt{- x^{2} + x}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = \frac{1}{2}$$
Зн. экстремумы в точках:
(1/2, 1/2)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумы функции в точках:
$$x_{1} = \frac{1}{2}$$
Убывает на промежутках
(-oo, 1/2]

Возрастает на промежутках
[1/2, oo)
Точки перегибов
[TeX]
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$- \frac{1}{\sqrt{x \left(- x + 1\right)}} \left(1 + \frac{\left(2 x - 1\right)^{2}}{4 x \left(- x + 1\right)}\right) = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
[TeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty} \sqrt{- x^{2} + x} = \infty i$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = \infty i$$
$$\lim_{x \to \infty} \sqrt{- x^{2} + x} = \infty i$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = \infty i$$
Наклонные асимптоты
[TeX]
Наклонную асимптоту можно найти, подсчитав предел функции sqrt(x - x^2), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \sqrt{- x^{2} + x}\right) = - i$$
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = - i x$$
$$\lim_{x \to \infty}\left(\frac{1}{x} \sqrt{- x^{2} + x}\right) = i$$
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = i x$$
Чётность и нечётность функции
[TeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\sqrt{- x^{2} + x} = \sqrt{- x^{2} - x}$$
- Нет
$$\sqrt{- x^{2} + x} = - \sqrt{- x^{2} - x}$$
- Нет
значит, функция
не является
ни чётной ни нечётной