График функции y = (|x-1|)+(|x-2|)+(|x-3|)

Функция f() ?

Примеры

Решение

Вы ввели
[LaTeX]
f(x) = |x - 1| + |x - 2| + |x - 3|
$$f{\left (x \right )} = \left|{x - 2}\right| + \left|{x - 1}\right| + \left|{x - 3}\right|$$
График функции
[LaTeX]
Точки пересечения с осью координат X
[LaTeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\left|{x - 2}\right| + \left|{x - 1}\right| + \left|{x - 3}\right| = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
[LaTeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в |x - 1| + |x - 2| + |x - 3|.
$$\left|{-1}\right| + \left|{-2}\right| + \left|{-3}\right|$$
Результат:
$$f{\left (0 \right )} = 6$$
Точка:
(0, 6)
Экстремумы функции
[LaTeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\operatorname{sign}{\left (x - 3 \right )} + \operatorname{sign}{\left (x - 2 \right )} + \operatorname{sign}{\left (x - 1 \right )} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 2$$
Зн. экстремумы в точках:
(2, 2)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{1} = 2$$
Максимумов у функции нет
Убывает на промежутках
[2, oo)

Возрастает на промежутках
(-oo, 2]
Горизонтальные асимптоты
[LaTeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\left|{x - 2}\right| + \left|{x - 1}\right| + \left|{x - 3}\right|\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\left|{x - 2}\right| + \left|{x - 1}\right| + \left|{x - 3}\right|\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
[LaTeX]
Наклонную асимптоту можно найти, подсчитав предел функции |x - 1| + |x - 2| + |x - 3|, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(\left|{x - 2}\right| + \left|{x - 1}\right| + \left|{x - 3}\right|\right)\right) = -3$$
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = - 3 x$$
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(\left|{x - 2}\right| + \left|{x - 1}\right| + \left|{x - 3}\right|\right)\right) = 3$$
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = 3 x$$
Чётность и нечётность функции
[LaTeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\left|{x - 2}\right| + \left|{x - 1}\right| + \left|{x - 3}\right| = \left|{x + 1}\right| + \left|{x + 2}\right| + \left|{x + 3}\right|$$
- Нет
$$\left|{x - 2}\right| + \left|{x - 1}\right| + \left|{x - 3}\right| = - \left|{x + 1}\right| - \left|{x + 2}\right| - \left|{x + 3}\right|$$
- Нет
значит, функция
не является
ни чётной ни нечётной