∫ Найти интеграл от y = f(x) = 2^8*sin(x)^(8) dx (2 в степени 8 умножить на синус от (х) в степени (8)) - с подробным решением онлайн [Есть ответ!]

Интеграл 2^8*sin(x)^(8) (dx)

Преподаватель очень удивится увидев твоё верное решение😉

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1              
      /              
     |               
     |   8    8      
     |  2 *sin (x) dx
     |               
    /                
    0                
    $$\int\limits_{0}^{1} 2^{8} \sin^{8}{\left(x \right)}\, dx$$
    Подробное решение
    1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

      1. Перепишите подынтегральное выражение:

      2. Есть несколько способов вычислить этот интеграл.

        Метод #1

        1. Перепишите подынтегральное выражение:

        2. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Перепишите подынтегральное выражение:

            3. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Перепишите подынтегральное выражение:

                2. Интегрируем почленно:

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. пусть .

                      Тогда пусть и подставим :

                      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                        1. Интеграл от косинуса есть синус:

                        Таким образом, результат будет:

                      Если сейчас заменить ещё в:

                    Таким образом, результат будет:

                  1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                  Результат есть:

                Таким образом, результат будет:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Есть несколько способов вычислить этот интеграл.

              Метод #1

              1. пусть .

                Тогда пусть и подставим :

                1. Интегрируем почленно:

                  1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл есть когда :

                    Таким образом, результат будет:

                  Результат есть:

                Если сейчас заменить ещё в:

              Метод #2

              1. Перепишите подынтегральное выражение:

              2. Интегрируем почленно:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. пусть .

                    Тогда пусть и подставим :

                    1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                      1. Интеграл есть когда :

                      Таким образом, результат будет:

                    Если сейчас заменить ещё в:

                  Таким образом, результат будет:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Результат есть:

              Метод #3

              1. Перепишите подынтегральное выражение:

              2. Интегрируем почленно:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. пусть .

                    Тогда пусть и подставим :

                    1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                      1. Интеграл есть когда :

                      Таким образом, результат будет:

                    Если сейчас заменить ещё в:

                  Таким образом, результат будет:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

        Метод #2

        1. Перепишите подынтегральное выражение:

        2. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Перепишите подынтегральное выражение:

            3. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Перепишите подынтегральное выражение:

                2. Интегрируем почленно:

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. пусть .

                      Тогда пусть и подставим :

                      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                        1. Интеграл от косинуса есть синус:

                        Таким образом, результат будет:

                      Если сейчас заменить ещё в:

                    Таким образом, результат будет:

                  1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                  Результат есть:

                Таким образом, результат будет:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. пусть .

              Тогда пусть и подставим :

              1. Интегрируем почленно:

                1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл есть когда :

                  Таким образом, результат будет:

                Результат есть:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

      Таким образом, результат будет:

    2. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
                                                       3                    5          
                                  7             140*sin (1)*cos(1)   112*sin (1)*cos(1)
    70 - 70*cos(1)*sin(1) - 32*sin (1)*cos(1) - ------------------ - ------------------
                                                        3                    3         
    $$- 70 \sin{\left(1 \right)} \cos{\left(1 \right)} - \frac{140 \sin^{3}{\left(1 \right)} \cos{\left(1 \right)}}{3} - \frac{112 \sin^{5}{\left(1 \right)} \cos{\left(1 \right)}}{3} - 32 \sin^{7}{\left(1 \right)} \cos{\left(1 \right)} + 70$$
    =
    =
                                                       3                    5          
                                  7             140*sin (1)*cos(1)   112*sin (1)*cos(1)
    70 - 70*cos(1)*sin(1) - 32*sin (1)*cos(1) - ------------------ - ------------------
                                                        3                    3         
    $$- 70 \sin{\left(1 \right)} \cos{\left(1 \right)} - \frac{140 \sin^{3}{\left(1 \right)} \cos{\left(1 \right)}}{3} - \frac{112 \sin^{5}{\left(1 \right)} \cos{\left(1 \right)}}{3} - 32 \sin^{7}{\left(1 \right)} \cos{\left(1 \right)} + 70$$
    Численный ответ [src]
    9.47655672030381
    Ответ (Неопределённый) [src]
      /                                                                              
     |                                                                         3     
     |  8    8                                                sin(8*x)   32*sin (2*x)
     | 2 *sin (x) dx = C - 64*sin(2*x) + 14*sin(4*x) + 70*x + -------- + ------------
     |                                                           4            3      
    /                                                                                
    $$\int 2^{8} \sin^{8}{\left(x \right)}\, dx = C + 70 x + \frac{32 \sin^{3}{\left(2 x \right)}}{3} - 64 \sin{\left(2 x \right)} + 14 \sin{\left(4 x \right)} + \frac{\sin{\left(8 x \right)}}{4}$$
    График
    Интеграл 2^8*sin(x)^(8) (dx) /media/krcore-image-pods/hash/indefinite/9/69/f8feaa97b9ae4026b5430d3871b90.png