1 / | | _________ | 3 / 2 | x *\/ 16 - x dx | / 0
TrigSubstitutionRule(theta=_theta, func=4*sin(_theta), rewritten=1024*sin(_theta)**3*cos(_theta)**2, substep=ConstantTimesRule(constant=1024, other=sin(_theta)**3*cos(_theta)**2, substep=RewriteRule(rewritten=(-cos(_theta)**2 + 1)*sin(_theta)*cos(_theta)**2, substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=cos(_theta), constant=1, substep=AddRule(substeps=[PowerRule(base=_u, exp=4, context=_u**4, symbol=_u), ConstantTimesRule(constant=-1, other=_u**2, substep=PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), context=-_u**2, symbol=_u)], context=_u**4 - _u**2, symbol=_u), context=(-cos(_theta)**2 + 1)*sin(_theta)*cos(_theta)**2, symbol=_theta), RewriteRule(rewritten=-sin(_theta)*cos(_theta)**4 + sin(_theta)*cos(_theta)**2, substep=AddRule(substeps=[ConstantTimesRule(constant=-1, other=sin(_theta)*cos(_theta)**4, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**4, substep=PowerRule(base=_u, exp=4, context=_u**4, symbol=_u), context=_u**4, symbol=_u), context=sin(_theta)*cos(_theta)**4, symbol=_theta), context=-sin(_theta)*cos(_theta)**4, symbol=_theta), URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**2, substep=PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), context=_u**2, symbol=_u), context=sin(_theta)*cos(_theta)**2, symbol=_theta)], context=-sin(_theta)*cos(_theta)**4 + sin(_theta)*cos(_theta)**2, symbol=_theta), context=(-cos(_theta)**2 + 1)*sin(_theta)*cos(_theta)**2, symbol=_theta)], context=(-cos(_theta)**2 + 1)*sin(_theta)*cos(_theta)**2, symbol=_theta), context=sin(_theta)**3*cos(_theta)**2, symbol=_theta), context=1024*sin(_theta)**3*cos(_theta)**2, symbol=_theta), restriction=And(x < 4, x > -4), context=x**3*sqrt(-x**2 + 16), symbol=x)
Теперь упростить:
Добавляем постоянную интегрирования:
Ответ:
1 / | | _________ | 3 / 2 2048 ____ | x *\/ 16 - x dx = ---- - 35*\/ 15 | 15 / 0
0.978916216073742
/ | | _________ // 3/2 5/2 \ | 3 / 2 || / 2\ / 2\ | | x *\/ 16 - x dx = C + |< 16*\16 - x / \16 - x / | | ||- --------------- + ------------ for And(x > -4, x < 4)| / \\ 3 5 /