x^2>=-3 (неравенство)

Шаг 1. Введите неравенство

В неравенстве неизвестная

    Укажите решение неравенства: x^2>=-3 (множество решений неравенства)

    Решение

    Вы ввели
    [LaTeX]
     2      
    x  >= -3
    $$x^{2} \geq -3$$
    Подробное решение
    [LaTeX]
    Дано неравенство:
    $$x^{2} \geq -3$$
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    $$x^{2} = -3$$
    Решаем:
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    $$x^{2} = -3$$
    в
    $$x^{2} + 3 = 0$$
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 1$$
    $$b = 0$$
    $$c = 3$$
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (3) = -12

    Т.к. D < 0, то уравнение
    не имеет вещественных корней,
    но комплексные корни имеются.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = \sqrt{3} i$$
    $$x_{2} = - \sqrt{3} i$$
    $$x_{1} = \sqrt{3} i$$
    $$x_{2} = - \sqrt{3} i$$
    Исключаем комплексные решения:
    Данное ур-ние не имеет решений,
    значит данное неравенство выполняется всегда или не выполняется никогда
    проверим
    подставляем произвольную точку, например
    x0 = 0

    $$0^{2} \geq -3$$
    0 >= -3

    зн. неравенство выполняется всегда
    Решение неравенства на графике
    [LaTeX]
    Быстрый ответ
    [LaTeX]
    Данное неравенство верно выполняется всегда