1-x^2<(5-x)^(1/4) (неравенство)

Шаг 1. Введите неравенство

В неравенстве неизвестная

    Укажите решение неравенства: 1-x^2<(5-x)^(1/4) (множество решений неравенства)

    Решение

    Вы ввели
    [TeX]
    [pretty]
    [text]
         2   4 _______
    1 - x  < \/ 5 - x 
    $$- x^{2} + 1 < \sqrt[4]{- x + 5}$$
    Быстрый ответ
    [TeX]
    [pretty]
    [text]
      /   /                    /             8             2             6             4              \\     /               /             8             2             6             4              \    \     /           /             8             2             6             4              \         /             8             2             6             4              \    \\
    Or\And\-oo < x, x < CRootOf\-4 + Dummy_20  - 4*Dummy_20  - 4*Dummy_20  + 6*Dummy_20  + Dummy_20, 0//, And\x < oo, CRootOf\-4 + Dummy_20  - 4*Dummy_20  - 4*Dummy_20  + 6*Dummy_20  + Dummy_20, 1/ < x/, And\x < CRootOf\-4 + Dummy_20  - 4*Dummy_20  - 4*Dummy_20  + 6*Dummy_20  + Dummy_20, 1/, CRootOf\-4 + Dummy_20  - 4*Dummy_20  - 4*Dummy_20  + 6*Dummy_20  + Dummy_20, 0/ < x//
    $$\left(-\infty < x \wedge x < \operatorname{CRootOf} {\left(Dummy_{20}^{8} - 4 Dummy_{20}^{6} + 6 Dummy_{20}^{4} - 4 Dummy_{20}^{2} + Dummy_{20} - 4, 0\right)}\right) \vee \left(x < \infty \wedge \operatorname{CRootOf} {\left(Dummy_{20}^{8} - 4 Dummy_{20}^{6} + 6 Dummy_{20}^{4} - 4 Dummy_{20}^{2} + Dummy_{20} - 4, 1\right)} < x\right) \vee \left(x < \operatorname{CRootOf} {\left(Dummy_{20}^{8} - 4 Dummy_{20}^{6} + 6 Dummy_{20}^{4} - 4 Dummy_{20}^{2} + Dummy_{20} - 4, 1\right)} \wedge \operatorname{CRootOf} {\left(Dummy_{20}^{8} - 4 Dummy_{20}^{6} + 6 Dummy_{20}^{4} - 4 Dummy_{20}^{2} + Dummy_{20} - 4, 0\right)} < x\right)$$
    Быстрый ответ 2
    [TeX]
    [pretty]
    [text]
                 /             8             2             6             4              \            /             8             2             6             4              \         /             8             2             6             4              \            /             8             2             6             4              \     
    (-oo, CRootOf\-4 + Dummy_20  - 4*Dummy_20  - 4*Dummy_20  + 6*Dummy_20  + Dummy_20, 0/) U (CRootOf\-4 + Dummy_20  - 4*Dummy_20  - 4*Dummy_20  + 6*Dummy_20  + Dummy_20, 0/, CRootOf\-4 + Dummy_20  - 4*Dummy_20  - 4*Dummy_20  + 6*Dummy_20  + Dummy_20, 1/) U (CRootOf\-4 + Dummy_20  - 4*Dummy_20  - 4*Dummy_20  + 6*Dummy_20  + Dummy_20, 1/, oo)
    $$x \in \left(-\infty, \operatorname{CRootOf} {\left(Dummy_{20}^{8} - 4 Dummy_{20}^{6} + 6 Dummy_{20}^{4} - 4 Dummy_{20}^{2} + Dummy_{20} - 4, 0\right)}\right) \cup \left(\operatorname{CRootOf} {\left(Dummy_{20}^{8} - 4 Dummy_{20}^{6} + 6 Dummy_{20}^{4} - 4 Dummy_{20}^{2} + Dummy_{20} - 4, 0\right)}, \operatorname{CRootOf} {\left(Dummy_{20}^{8} - 4 Dummy_{20}^{6} + 6 Dummy_{20}^{4} - 4 Dummy_{20}^{2} + Dummy_{20} - 4, 1\right)}\right) \cup \left(\operatorname{CRootOf} {\left(Dummy_{20}^{8} - 4 Dummy_{20}^{6} + 6 Dummy_{20}^{4} - 4 Dummy_{20}^{2} + Dummy_{20} - 4, 1\right)}, \infty\right)$$