Подробное решение
Возьмём предел
$$\lim_{x \to 0^+}\left(\frac{1 - \cos{\left(x \right)}}{x^{2}}\right)$$
Используем тригонометрическую формулу
sin(a)^2 = (1 - cos(2*a))/2
преобразуем
$$\lim_{x \to 0^+}\left(\frac{1 - \cos{\left(x \right)}}{x^{2}}\right) = \lim_{x \to 0^+}\left(\frac{2 \sin^{2}{\left(\frac{x}{2} \right)}}{x^{2}}\right)$$
=
$$2 \left(\lim_{x \to 0^+}\left(\frac{\sin{\left(\frac{x}{2} \right)}}{x}\right)\right)^{2}$$
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\frac{x}{2} \right)}}{x}\right) = \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{2 u}\right)$$
=
$$\frac{\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)}{2}$$
Предел
$$\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)$$
есть первый замечательный предел, он равен 1.
тогда
$$2 \left(\lim_{x \to 0^+}\left(\frac{\sin{\left(\frac{x}{2} \right)}}{x}\right)\right)^{2} = 2 \left(\frac{\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)}{2}\right)^{2}$$
=
$$\frac{2}{4}$$
=
$$\frac{1}{2}$$
Тогда, окончательный ответ:
$$\lim_{x \to 0^+}\left(\frac{1 - \cos{\left(x \right)}}{x^{2}}\right) = \frac{1}{2}$$