a_n - a_k
d = ---------
n - k
$$d = \frac{- a_{k} + a_{n}}{- k + n}$$
$$a_{1} = a_{n} + d \left(n - 1\right)$$
(-1 + n)*(a_n - a_k)
a_1 = a_n - --------------------
n - k
$$a_{1} = a_{n} - \frac{\left(- a_{k} + a_{n}\right) \left(n - 1\right)}{- k + n}$$
a_6 - a_5
d = ---------
1
$$d = \frac{- a_{5} + a_{6}}{1}$$
a_6 - a_5
a_1 = a_6 - ---------*4
1
$$a_{1} = a_{6} - 4 \frac{- a_{5} + a_{6}}{1}$$
779 178
--- - ---
50 25
d = ---------
1
$$d = \frac{- \frac{178}{25} + \frac{779}{50}}{1}$$
779 178
--- - ---
779 50 25
a_1 = --- - ---------*5
50 1
$$a_{1} = - 5 \frac{- \frac{178}{25} + \frac{779}{50}}{1} + \frac{779}{50}$$
$$a_{1} = - \frac{668}{25}$$
-668/25; -913/50; -49/5; -67/50; 178/25; 779/50...
$$a_{1} = - \frac{668}{25}$$
$$a_{2} = - \frac{913}{50}$$
$$a_{3} = - \frac{49}{5}$$
$$a_{4} = - \frac{67}{50}$$
$$a_{5} = \frac{178}{25}$$
$$a_{6} = \frac{779}{50}$$
n*(a_1 + a_n)
S = -------------
2
$$S = \frac{n \left(a_{1} + a_{n}\right)}{2}$$
$$S_{6} = - \frac{1671}{50}$$