Найти производную y' = f'(x) = sqrt(x+sqrt(x+sqrt(x))) (квадратный корень из (х плюс квадратный корень из (х плюс квадратный корень из (х)))) - функции. Найдём значение производной функции в точке. [Есть ОТВЕТ!]

Производная sqrt(x+sqrt(x+sqrt(x)))

Учитель очень удивится увидев твоё верное решение производной 😉

()'

- производная -го порядка в точке

График:

от до

Ввести:

{ кусочно-заданную функцию можно здесь.

Решение

Вы ввели [src]
    ____________________
   /        ___________ 
  /        /       ___  
\/   x + \/  x + \/ x   
$$\sqrt{x + \sqrt{\sqrt{x} + x}}$$
  /    ____________________\
  |   /        ___________ |
d |  /        /       ___  |
--\\/   x + \/  x + \/ x   /
dx                          
$$\frac{d}{d x} \sqrt{x + \sqrt{\sqrt{x} + x}}$$
Подробное решение
  1. Заменим .

  2. В силу правила, применим: получим

  3. Затем примените цепочку правил. Умножим на :

    1. дифференцируем почленно:

      1. В силу правила, применим: получим

      2. Заменим .

      3. В силу правила, применим: получим

      4. Затем примените цепочку правил. Умножим на :

        1. дифференцируем почленно:

          1. В силу правила, применим: получим

          2. В силу правила, применим: получим

          В результате:

        В результате последовательности правил:

      В результате:

    В результате последовательности правил:

  4. Теперь упростим:


Ответ:

График
Первая производная [src]
        1      1        
        - + -------     
        2       ___     
  1         4*\/ x      
  - + ----------------  
  2        ___________  
          /       ___   
      2*\/  x + \/ x    
------------------------
    ____________________
   /        ___________ 
  /        /       ___  
\/   x + \/  x + \/ x   
$$\frac{\frac{\frac{1}{2} + \frac{1}{4 \sqrt{x}}}{2 \sqrt{\sqrt{x} + x}} + \frac{1}{2}}{\sqrt{x + \sqrt{\sqrt{x} + x}}}$$
Вторая производная [src]
 /                    2                          \ 
 |/            1     \      /                  2\| 
 ||      2 + -----   |      |       /      1  \ || 
 ||            ___   |      |       |2 + -----| || 
 ||          \/ x    |      |       |      ___| || 
 ||4 + --------------|      | 2     \    \/ x / || 
 ||       ___________|    2*|---- + ------------|| 
 ||      /       ___ |      | 3/2          ___  || 
 |\    \/  x + \/ x  /      \x       x + \/ x   /| 
-|--------------------- + -----------------------| 
 |         ___________            ___________    | 
 |        /       ___            /       ___     | 
 \  x + \/  x + \/ x           \/  x + \/ x      / 
---------------------------------------------------
                   ____________________            
                  /        ___________             
                 /        /       ___              
            64*\/   x + \/  x + \/ x               
$$- \frac{\frac{\left(\frac{2 + \frac{1}{\sqrt{x}}}{\sqrt{\sqrt{x} + x}} + 4\right)^{2}}{x + \sqrt{\sqrt{x} + x}} + \frac{2 \left(\frac{\left(2 + \frac{1}{\sqrt{x}}\right)^{2}}{\sqrt{x} + x} + \frac{2}{x^{\frac{3}{2}}}\right)}{\sqrt{\sqrt{x} + x}}}{64 \sqrt{x + \sqrt{\sqrt{x} + x}}}$$
Третья производная [src]
  /                    3     /                  3                   \                          /                  2\\
  |/            1     \      |       /      1  \       /      1  \  |     /            1     \ |       /      1  \ ||
  ||      2 + -----   |      |       |2 + -----|     2*|2 + -----|  |     |      2 + -----   | |       |2 + -----| ||
  ||            ___   |      |       |      ___|       |      ___|  |     |            ___   | |       |      ___| ||
  ||          \/ x    |      | 4     \    \/ x /       \    \/ x /  |     |          \/ x    | | 2     \    \/ x / ||
  ||4 + --------------|    4*|---- + ------------ + ----------------|   2*|4 + --------------|*|---- + ------------||
  ||       ___________|      | 5/2              2    3/2 /      ___\|     |       ___________| | 3/2          ___  ||
  ||      /       ___ |      |x      /      ___\    x   *\x + \/ x /|     |      /       ___ | \x       x + \/ x   /|
  |\    \/  x + \/ x  /      \       \x + \/ x /                    /     \    \/  x + \/ x  /                      |
3*|--------------------- + ------------------------------------------ + --------------------------------------------|
  |                    2                    ___________                        ___________ /       ___________\     |
  |/       ___________\                    /       ___                        /       ___  |      /       ___ |     |
  ||      /       ___ |                  \/  x + \/ x                       \/  x + \/ x  *\x + \/  x + \/ x  /     |
  \\x + \/  x + \/ x  /                                                                                             /
---------------------------------------------------------------------------------------------------------------------
                                                     ____________________                                            
                                                    /        ___________                                             
                                                   /        /       ___                                              
                                             512*\/   x + \/  x + \/ x                                               
$$\frac{3 \left(\frac{\left(\frac{2 + \frac{1}{\sqrt{x}}}{\sqrt{\sqrt{x} + x}} + 4\right)^{3}}{\left(x + \sqrt{\sqrt{x} + x}\right)^{2}} + \frac{4 \left(\frac{\left(2 + \frac{1}{\sqrt{x}}\right)^{3}}{\left(\sqrt{x} + x\right)^{2}} + \frac{2 \cdot \left(2 + \frac{1}{\sqrt{x}}\right)}{x^{\frac{3}{2}} \left(\sqrt{x} + x\right)} + \frac{4}{x^{\frac{5}{2}}}\right)}{\sqrt{\sqrt{x} + x}} + \frac{2 \left(\frac{2 + \frac{1}{\sqrt{x}}}{\sqrt{\sqrt{x} + x}} + 4\right) \left(\frac{\left(2 + \frac{1}{\sqrt{x}}\right)^{2}}{\sqrt{x} + x} + \frac{2}{x^{\frac{3}{2}}}\right)}{\sqrt{\sqrt{x} + x} \left(x + \sqrt{\sqrt{x} + x}\right)}\right)}{512 \sqrt{x + \sqrt{\sqrt{x} + x}}}$$
График
Производная sqrt(x+sqrt(x+sqrt(x))) /media/krcore-image-pods/hash/derivative/d/cf/b7353b174493f7beeafa43403257e.png
×

Где учитесь?

Для правильного составления решения, укажите: