Найти производную y' = f'(x) = log(x+sqrt(1+x^2)) (логарифм от (х плюс квадратный корень из (1 плюс х в квадрате))) - функции. Найдём значение производной функции в точке. [Есть ОТВЕТ!]

Производная log(x+sqrt(1+x^2))

Учитель очень удивится увидев твоё верное решение производной 😉

()'

- производная -го порядка в точке

График:

от до

Ввести:

{ кусочно-заданную функцию можно здесь.

Решение

Вы ввели [src]
   /       ________\
   |      /      2 |
log\x + \/  1 + x  /
$$\log{\left (x + \sqrt{x^{2} + 1} \right )}$$
Подробное решение
  1. Заменим .

  2. Производная является .

  3. Затем примените цепочку правил. Умножим на :

    1. дифференцируем почленно:

      1. В силу правила, применим: получим

      2. Заменим .

      3. В силу правила, применим: получим

      4. Затем примените цепочку правил. Умножим на :

        1. дифференцируем почленно:

          1. Производная постоянной равна нулю.

          2. В силу правила, применим: получим

          В результате:

        В результате последовательности правил:

      В результате:

    В результате последовательности правил:

  4. Теперь упростим:


Ответ:

График
Первая производная [src]
         x     
1 + -----------
       ________
      /      2 
    \/  1 + x  
---------------
       ________
      /      2 
x + \/  1 + x  
$$\frac{\frac{x}{\sqrt{x^{2} + 1}} + 1}{x + \sqrt{x^{2} + 1}}$$
Вторая производная [src]
 /                               2\ 
 |        2     /         x     \ | 
 |       x      |1 + -----------| | 
 |-1 + ------   |       ________| | 
 |          2   |      /      2 | | 
 |     1 + x    \    \/  1 + x  / | 
-|----------- + ------------------| 
 |   ________           ________  | 
 |  /      2           /      2   | 
 \\/  1 + x      x + \/  1 + x    / 
------------------------------------
                 ________           
                /      2            
          x + \/  1 + x             
$$- \frac{1}{x + \sqrt{x^{2} + 1}} \left(\frac{\frac{x^{2}}{x^{2} + 1} - 1}{\sqrt{x^{2} + 1}} + \frac{\left(\frac{x}{\sqrt{x^{2} + 1}} + 1\right)^{2}}{x + \sqrt{x^{2} + 1}}\right)$$
Третья производная [src]
                   3                                           /        2  \
  /         x     \        /        2  \     /         x     \ |       x   |
2*|1 + -----------|        |       x   |   3*|1 + -----------|*|-1 + ------|
  |       ________|    3*x*|-1 + ------|     |       ________| |          2|
  |      /      2 |        |          2|     |      /      2 | \     1 + x /
  \    \/  1 + x  /        \     1 + x /     \    \/  1 + x  /              
-------------------- + ----------------- + ---------------------------------
                  2               3/2           ________ /       ________\  
 /       ________\        /     2\             /      2  |      /      2 |  
 |      /      2 |        \1 + x /           \/  1 + x  *\x + \/  1 + x  /  
 \x + \/  1 + x  /                                                          
----------------------------------------------------------------------------
                                     ________                               
                                    /      2                                
                              x + \/  1 + x                                 
$$\frac{1}{x + \sqrt{x^{2} + 1}} \left(\frac{3 x}{\left(x^{2} + 1\right)^{\frac{3}{2}}} \left(\frac{x^{2}}{x^{2} + 1} - 1\right) + \frac{3 \left(\frac{x}{\sqrt{x^{2} + 1}} + 1\right) \left(\frac{x^{2}}{x^{2} + 1} - 1\right)}{\left(x + \sqrt{x^{2} + 1}\right) \sqrt{x^{2} + 1}} + \frac{2 \left(\frac{x}{\sqrt{x^{2} + 1}} + 1\right)^{3}}{\left(x + \sqrt{x^{2} + 1}\right)^{2}}\right)$$
×

Где учитесь?

Для правильного составления решения, укажите: