Производная x/log(2*x)

()'

↑ Функция f () ? - производная -го порядка

График:

от до

Ввести:

{ кусочно-заданную функцию можно здесь.

Решение

Вы ввели [src]
   x    
--------
log(2*x)
$$\frac{x}{\log{\left (2 x \right )}}$$
Подробное решение
  1. Применим правило производной частного:

    и .

    Чтобы найти :

    1. В силу правила, применим: получим

    Чтобы найти :

    1. Заменим .

    2. Производная является .

    3. Затем примените цепочку правил. Умножим на :

      1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

        1. В силу правила, применим: получим

        Таким образом, в результате:

      В результате последовательности правил:

    Теперь применим правило производной деления:


Ответ:

График
Первая производная [src]
   1           1    
-------- - ---------
log(2*x)      2     
           log (2*x)
$$\frac{1}{\log{\left (2 x \right )}} - \frac{1}{\log^{2}{\left (2 x \right )}}$$
Вторая производная [src]
        2    
-1 + --------
     log(2*x)
-------------
      2      
 x*log (2*x) 
$$\frac{-1 + \frac{2}{\log{\left (2 x \right )}}}{x \log^{2}{\left (2 x \right )}}$$
Третья производная [src]
        6    
1 - ---------
       2     
    log (2*x)
-------------
  2    2     
 x *log (2*x)
$$\frac{1 - \frac{6}{\log^{2}{\left (2 x \right )}}}{x^{2} \log^{2}{\left (2 x \right )}}$$
×

Где учитесь?

Для правильного составления решения, укажите: