Найти производную y' = f'(x) = sin(x)^(2) (синус от (х) в степени (2)) - функции. Найдём значение производной функции в точке. [Есть ОТВЕТ!]

Производная sin(x)^(2)

Учитель очень удивится увидев твоё верное решение производной 😉

()'

- производная -го порядка в точке

График:

от до

Ввести:

{ кусочно-заданную функцию можно здесь.

Решение

Вы ввели [src]
   2   
sin (x)
$$\sin^{2}{\left (x \right )}$$
Подробное решение
  1. Заменим .

  2. В силу правила, применим: получим

  3. Затем примените цепочку правил. Умножим на :

    1. Производная синуса есть косинус:

    В результате последовательности правил:

  4. Теперь упростим:


Ответ:

График
Первая производная [src]
2*cos(x)*sin(x)
$$2 \sin{\left (x \right )} \cos{\left (x \right )}$$
Вторая производная [src]
  /   2         2   \
2*\cos (x) - sin (x)/
$$2 \left(- \sin^{2}{\left (x \right )} + \cos^{2}{\left (x \right )}\right)$$
Третья производная [src]
-8*cos(x)*sin(x)
$$- 8 \sin{\left (x \right )} \cos{\left (x \right )}$$
×

Где учитесь?

Для правильного составления решения, укажите: