Найти производную y' = f'(x) = (2+log(x))^sin(x) ((2 плюс логарифм от (х)) в степени синус от (х)) - функции. Найдём значение производной функции в точке. [Есть ОТВЕТ!]

Производная (2+log(x))^sin(x)

Учитель очень удивится увидев твоё верное решение производной 😉

()'

- производная -го порядка в точке

График:

от до

Ввести:

{ кусочно-заданную функцию можно здесь.

Решение

Вы ввели [src]
            sin(x)
(2 + log(x))      
$$\left(\log{\left (x \right )} + 2\right)^{\sin{\left (x \right )}}$$
Подробное решение
  1. Не могу найти шаги в поиске этой производной.

    Но производная


Ответ:

График
Первая производная [src]
            sin(x) /                             sin(x)    \
(2 + log(x))      *|cos(x)*log(2 + log(x)) + --------------|
                   \                         x*(2 + log(x))/
$$\left(\log{\left (\log{\left (x \right )} + 2 \right )} \cos{\left (x \right )} + \frac{\sin{\left (x \right )}}{x \left(\log{\left (x \right )} + 2\right)}\right) \left(\log{\left (x \right )} + 2\right)^{\sin{\left (x \right )}}$$
Вторая производная [src]
                   /                                         2                                                                               \
            sin(x) |/                             sin(x)    \                                  sin(x)            sin(x)           2*cos(x)   |
(2 + log(x))      *||cos(x)*log(2 + log(x)) + --------------|  - log(2 + log(x))*sin(x) - --------------- - ---------------- + --------------|
                   |\                         x*(2 + log(x))/                              2                 2             2   x*(2 + log(x))|
                   \                                                                      x *(2 + log(x))   x *(2 + log(x))                  /
$$\left(\log{\left (x \right )} + 2\right)^{\sin{\left (x \right )}} \left(\left(\log{\left (\log{\left (x \right )} + 2 \right )} \cos{\left (x \right )} + \frac{\sin{\left (x \right )}}{x \left(\log{\left (x \right )} + 2\right)}\right)^{2} - \log{\left (\log{\left (x \right )} + 2 \right )} \sin{\left (x \right )} + \frac{2 \cos{\left (x \right )}}{x \left(\log{\left (x \right )} + 2\right)} - \frac{\sin{\left (x \right )}}{x^{2} \left(\log{\left (x \right )} + 2\right)} - \frac{\sin{\left (x \right )}}{x^{2} \left(\log{\left (x \right )} + 2\right)^{2}}\right)$$
Третья производная [src]
                   /                                         3                                                                                                                                                                                                                                                                    \
            sin(x) |/                             sin(x)    \                               /                             sin(x)    \ /                              sin(x)            sin(x)           2*cos(x)   \      3*sin(x)          3*cos(x)          3*cos(x)           2*sin(x)          2*sin(x)           3*sin(x)    |
(2 + log(x))      *||cos(x)*log(2 + log(x)) + --------------|  - cos(x)*log(2 + log(x)) - 3*|cos(x)*log(2 + log(x)) + --------------|*|log(2 + log(x))*sin(x) + --------------- + ---------------- - --------------| - -------------- - --------------- - ---------------- + --------------- + ---------------- + ----------------|
                   |\                         x*(2 + log(x))/                               \                         x*(2 + log(x))/ |                          2                 2             2   x*(2 + log(x))|   x*(2 + log(x))    2                 2             2    3                 3             3    3             2|
                   \                                                                                                                  \                         x *(2 + log(x))   x *(2 + log(x))                  /                    x *(2 + log(x))   x *(2 + log(x))    x *(2 + log(x))   x *(2 + log(x))    x *(2 + log(x)) /
$$\left(\log{\left (x \right )} + 2\right)^{\sin{\left (x \right )}} \left(\left(\log{\left (\log{\left (x \right )} + 2 \right )} \cos{\left (x \right )} + \frac{\sin{\left (x \right )}}{x \left(\log{\left (x \right )} + 2\right)}\right)^{3} - 3 \left(\log{\left (\log{\left (x \right )} + 2 \right )} \cos{\left (x \right )} + \frac{\sin{\left (x \right )}}{x \left(\log{\left (x \right )} + 2\right)}\right) \left(\log{\left (\log{\left (x \right )} + 2 \right )} \sin{\left (x \right )} - \frac{2 \cos{\left (x \right )}}{x \left(\log{\left (x \right )} + 2\right)} + \frac{\sin{\left (x \right )}}{x^{2} \left(\log{\left (x \right )} + 2\right)} + \frac{\sin{\left (x \right )}}{x^{2} \left(\log{\left (x \right )} + 2\right)^{2}}\right) - \log{\left (\log{\left (x \right )} + 2 \right )} \cos{\left (x \right )} - \frac{3 \sin{\left (x \right )}}{x \left(\log{\left (x \right )} + 2\right)} - \frac{3 \cos{\left (x \right )}}{x^{2} \left(\log{\left (x \right )} + 2\right)} - \frac{3 \cos{\left (x \right )}}{x^{2} \left(\log{\left (x \right )} + 2\right)^{2}} + \frac{2 \sin{\left (x \right )}}{x^{3} \left(\log{\left (x \right )} + 2\right)} + \frac{3 \sin{\left (x \right )}}{x^{3} \left(\log{\left (x \right )} + 2\right)^{2}} + \frac{2 \sin{\left (x \right )}}{x^{3} \left(\log{\left (x \right )} + 2\right)^{3}}\right)$$
×

Где учитесь?

Для правильного составления решения, укажите: