Производная 3*cbrt(x^5-3*x^4+1)

()'

↑ Функция f () ? - производная -го порядка

Решение

Вы ввели
[LaTeX]
     _______________
  3 /  5      4     
3*\/  x  - 3*x  + 1 
$$3 \sqrt[3]{x^{5} - 3 x^{4} + 1}$$
Подробное решение
[LaTeX]
  1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

    1. Заменим .

    2. В силу правила, применим: получим

    3. Затем примените цепочку правил. Умножим на :

      1. дифференцируем почленно:

        1. дифференцируем почленно:

          1. В силу правила, применим: получим

          2. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

            1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

              1. В силу правила, применим: получим

              Таким образом, в результате:

            Таким образом, в результате:

          В результате:

        2. Производная постоянной равна нулю.

        В результате:

      В результате последовательности правил:

    Таким образом, в результате:

  2. Теперь упростим:


Ответ:

График
[LaTeX]
Первая производная
[LaTeX]
  /            4\ 
  |     3   5*x | 
3*|- 4*x  + ----| 
  \          3  / 
------------------
               2/3
/ 5      4    \   
\x  - 3*x  + 1/   
$$\frac{5 x^{4} - 12 x^{3}}{\left(x^{5} - 3 x^{4} + 1\right)^{\frac{2}{3}}}$$
Вторая производная
[LaTeX]
     /              4            2 \
   2 |     10*x    x *(-12 + 5*x)  |
6*x *|-6 + ---- - -----------------|
     |      3       /     5      4\|
     \            9*\1 + x  - 3*x //
------------------------------------
                        2/3         
         /     5      4\            
         \1 + x  - 3*x /            
$$\frac{6 x^{2}}{\left(x^{5} - 3 x^{4} + 1\right)^{\frac{2}{3}}} \left(- \frac{x^{4} \left(5 x - 12\right)^{2}}{9 x^{5} - 27 x^{4} + 9} + \frac{10 x}{3} - 6\right)$$
Третья производная
[LaTeX]
    /                 8            3       4                       \
    |              5*x *(-12 + 5*x)     4*x *(-12 + 5*x)*(-9 + 5*x)|
6*x*|-12 + 10*x + ------------------- - ---------------------------|
    |                               2          /     5      4\     |
    |                /     5      4\         3*\1 + x  - 3*x /     |
    \             27*\1 + x  - 3*x /                               /
--------------------------------------------------------------------
                                        2/3                         
                         /     5      4\                            
                         \1 + x  - 3*x /                            
$$\frac{6 x}{\left(x^{5} - 3 x^{4} + 1\right)^{\frac{2}{3}}} \left(\frac{5 x^{8} \left(5 x - 12\right)^{3}}{27 \left(x^{5} - 3 x^{4} + 1\right)^{2}} - \frac{4 x^{4} \left(5 x - 12\right) \left(5 x - 9\right)}{3 x^{5} - 9 x^{4} + 3} + 10 x - 12\right)$$