Дифференциальное уравнение y″–4y′=0
Решение
Вы ввели
$$- 4 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
Подробное решение
Дано уравнение:
$$- 4 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
Это дифф. уравнение имеет вид:
где
$$p = -4$$
$$q = 0$$
Называется линейным однородным
дифф. ур-нием 2-го порядка с постоянными коэффициентами.
Решить это ур-ние не представляет особой сложности
Сначала отыскиваем корни характеристического ур-ния
$$q + \left(k^{2} + k p\right) = 0$$
В нашем случае характ. ур-ние будет иметь вид:
$$k^{2} - 4 k = 0$$
Подробное решение простого уравнения
- это простое квадратное ур-ние
Корни этого ур-ния:
$$k_{1} = 0$$
$$k_{2} = 4$$
Т.к. характ. ур-ние имеет два корня,
и корни не имеют комплексный вид, то
решение соотв. дифф. ур-ния имеет вид:
$$y{\left(x \right)} = C_{1} e^{k_{1} x} + C_{2} e^{k_{2} x}$$
Получаем окончательный ответ:
$$y{\left(x \right)} = C_{1} + C_{2} e^{4 x}$$
$$- 4 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
Это дифф. уравнение имеет вид:
y'' + p*y' + q*y = 0,
где
$$p = -4$$
$$q = 0$$
Называется линейным однородным
дифф. ур-нием 2-го порядка с постоянными коэффициентами.
Решить это ур-ние не представляет особой сложности
Сначала отыскиваем корни характеристического ур-ния
$$q + \left(k^{2} + k p\right) = 0$$
В нашем случае характ. ур-ние будет иметь вид:
$$k^{2} - 4 k = 0$$
Подробное решение простого уравнения
- это простое квадратное ур-ние
Корни этого ур-ния:
$$k_{1} = 0$$
$$k_{2} = 4$$
Т.к. характ. ур-ние имеет два корня,
и корни не имеют комплексный вид, то
решение соотв. дифф. ур-ния имеет вид:
$$y{\left(x \right)} = C_{1} e^{k_{1} x} + C_{2} e^{k_{2} x}$$
Получаем окончательный ответ:
$$y{\left(x \right)} = C_{1} + C_{2} e^{4 x}$$
Ответ
$$y{\left(x \right)} = C_{1} + C_{2} e^{4 x}$$
Классификация
factorable
nth linear constant coeff homogeneous
Liouville
nth order reducible
2nd power series ordinary
Liouville Integral
Еще ссылки
Решите дифференциальное уравнение y″–4y′=0 (у ″–4 у ′ равно 0) - различные методы решения и порядка дифференциальных уравнений [Есть ответ!]:
Дифференциальное уравнение
Идентичные выражения:
y″–4y′= ноль
у ″–4 у ′ равно 0
у ″–4 у ′ равно ноль
y″–4y′=O