Дифференциальное уравнение y’’-10y’+25y=4e^(5x)
Решение
Вы ввели
$$25 y{\left(x \right)} - 10 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 4 e^{5 x}$$
Подробное решение
Дано уравнение:
$$25 y{\left(x \right)} - 10 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 4 e^{5 x}$$
Это дифф. уравнение имеет вид:
где
$$p = -10$$
$$q = 25$$
$$s = - 4 e^{5 x}$$
Называется линейным неоднородным
дифф. ур-нием 2-го порядка с постоянными коэффициентами.
Решить это ур-ние не представляет особой сложности
Решим сначала соответствующее линейное однородное ур-ние
Сначала отыскиваем корни характеристического ур-ния
$$q + \left(k^{2} + k p\right) = 0$$
В нашем случае характ. ур-ние будет иметь вид:
$$k^{2} - 10 k + 25 = 0$$
Подробное решение простого уравнения
- это простое квадратное ур-ние
Корень этого ур-ния:
$$k_{1} = 5$$
Т.к. корень характ. ур-ния один,
и не имеет комплексный вид, то
решение соотв. дифф. ур-ния имеет вид:
$$y{\left(x \right)} = e^{k_{1} x} C_{1} + e^{k_{1} x} C_{2} x$$
Подставляем $$k_{1} = 5$$
$$y{\left(x \right)} = C_{1} e^{5 x} + C_{2} x e^{5 x}$$
Мы нашли решение соотв. однородного ур-ния
Теперь надо решить наше неоднородное уравнение
Используем метод вариации произвольной постоянной
Считаем, что C1 и C2 - это функции от x
И общим решением будет:
$$y{\left(x \right)} = x \operatorname{C_{2}}{\left(x \right)} e^{5 x} + \operatorname{C_{1}}{\left(x \right)} e^{5 x}$$
где C1(x) и C2(x)
согласно методу вариации постоянных найдём из системы:
$$\operatorname{y_{1}}{\left(x \right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + \operatorname{y_{2}}{\left(x \right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 0$$
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} \frac{d}{d x} \operatorname{y_{1}}{\left(x \right)} + \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} \frac{d}{d x} \operatorname{y_{2}}{\left(x \right)} = f{\left(x \right)}$$
где
y1(x) и y2(x) - линейно независимые частные решения ЛОДУ,
y1(x) = exp(5*x) (C1=1, C2=0),
y2(x) = x*exp(5*x) (C1=0, C2=1).
А свободный член f = - s, или
$$f{\left(x \right)} = 4 e^{5 x}$$
Значит, система примет вид:
$$x e^{5 x} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + e^{5 x} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = 0$$
$$\frac{d}{d x} x e^{5 x} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} \frac{d}{d x} e^{5 x} = 4 e^{5 x}$$
или
$$x e^{5 x} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + e^{5 x} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = 0$$
$$\left(5 x e^{5 x} + e^{5 x}\right) \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + 5 e^{5 x} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = 4 e^{5 x}$$
Решаем эту систему:
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = - 4 x$$
$$\frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 4$$
- это простые дифф. ур-ния, решаем их
$$\operatorname{C_{1}}{\left(x \right)} = C_{3} + \int \left(- 4 x\right)\, dx$$
$$\operatorname{C_{2}}{\left(x \right)} = C_{4} + \int 4\, dx$$
или
$$\operatorname{C_{1}}{\left(x \right)} = C_{3} - 2 x^{2}$$
$$\operatorname{C_{2}}{\left(x \right)} = C_{4} + 4 x$$
Подставляем найденные C1(x) и C2(x) в
$$y{\left(x \right)} = x \operatorname{C_{2}}{\left(x \right)} e^{5 x} + \operatorname{C_{1}}{\left(x \right)} e^{5 x}$$
Получаем окончательный ответ:
$$y{\left(x \right)} = C_{3} e^{5 x} + C_{4} x e^{5 x} + 2 x^{2} e^{5 x}$$
где C3 и C4 есть константы
$$25 y{\left(x \right)} - 10 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 4 e^{5 x}$$
Это дифф. уравнение имеет вид:
y'' + p*y' + q*y = s,
где
$$p = -10$$
$$q = 25$$
$$s = - 4 e^{5 x}$$
Называется линейным неоднородным
дифф. ур-нием 2-го порядка с постоянными коэффициентами.
Решить это ур-ние не представляет особой сложности
Решим сначала соответствующее линейное однородное ур-ние
y'' + p*y' + q*y = 0
Сначала отыскиваем корни характеристического ур-ния
$$q + \left(k^{2} + k p\right) = 0$$
В нашем случае характ. ур-ние будет иметь вид:
$$k^{2} - 10 k + 25 = 0$$
Подробное решение простого уравнения
- это простое квадратное ур-ние
Корень этого ур-ния:
$$k_{1} = 5$$
Т.к. корень характ. ур-ния один,
и не имеет комплексный вид, то
решение соотв. дифф. ур-ния имеет вид:
$$y{\left(x \right)} = e^{k_{1} x} C_{1} + e^{k_{1} x} C_{2} x$$
Подставляем $$k_{1} = 5$$
$$y{\left(x \right)} = C_{1} e^{5 x} + C_{2} x e^{5 x}$$
Мы нашли решение соотв. однородного ур-ния
Теперь надо решить наше неоднородное уравнение
y'' + p*y' + q*y = s
Используем метод вариации произвольной постоянной
Считаем, что C1 и C2 - это функции от x
И общим решением будет:
$$y{\left(x \right)} = x \operatorname{C_{2}}{\left(x \right)} e^{5 x} + \operatorname{C_{1}}{\left(x \right)} e^{5 x}$$
где C1(x) и C2(x)
согласно методу вариации постоянных найдём из системы:
$$\operatorname{y_{1}}{\left(x \right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + \operatorname{y_{2}}{\left(x \right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 0$$
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} \frac{d}{d x} \operatorname{y_{1}}{\left(x \right)} + \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} \frac{d}{d x} \operatorname{y_{2}}{\left(x \right)} = f{\left(x \right)}$$
где
y1(x) и y2(x) - линейно независимые частные решения ЛОДУ,
y1(x) = exp(5*x) (C1=1, C2=0),
y2(x) = x*exp(5*x) (C1=0, C2=1).
А свободный член f = - s, или
$$f{\left(x \right)} = 4 e^{5 x}$$
Значит, система примет вид:
$$x e^{5 x} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + e^{5 x} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = 0$$
$$\frac{d}{d x} x e^{5 x} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} \frac{d}{d x} e^{5 x} = 4 e^{5 x}$$
или
$$x e^{5 x} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + e^{5 x} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = 0$$
$$\left(5 x e^{5 x} + e^{5 x}\right) \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} + 5 e^{5 x} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = 4 e^{5 x}$$
Решаем эту систему:
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = - 4 x$$
$$\frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 4$$
- это простые дифф. ур-ния, решаем их
$$\operatorname{C_{1}}{\left(x \right)} = C_{3} + \int \left(- 4 x\right)\, dx$$
$$\operatorname{C_{2}}{\left(x \right)} = C_{4} + \int 4\, dx$$
или
$$\operatorname{C_{1}}{\left(x \right)} = C_{3} - 2 x^{2}$$
$$\operatorname{C_{2}}{\left(x \right)} = C_{4} + 4 x$$
Подставляем найденные C1(x) и C2(x) в
$$y{\left(x \right)} = x \operatorname{C_{2}}{\left(x \right)} e^{5 x} + \operatorname{C_{1}}{\left(x \right)} e^{5 x}$$
Получаем окончательный ответ:
$$y{\left(x \right)} = C_{3} e^{5 x} + C_{4} x e^{5 x} + 2 x^{2} e^{5 x}$$
где C3 и C4 есть константы
Ответ
$$y{\left(x \right)} = \left(C_{1} + x \left(C_{2} + 2 x\right)\right) e^{5 x}$$
Классификация
nth linear constant coeff undetermined coefficients
nth linear constant coeff variation of parameters
nth linear constant coeff variation of parameters Integral
Еще ссылки
Решите дифференциальное уравнение y’’-10y’+25y=4e^(5x) (у ’’ минус 10 у ’ плюс 25 у равно 4e в степени (5 х)) - различные методы решения и порядка дифференциальных уравнений [Есть ответ!]:
Дифференциальное уравнение
Идентичные выражения:
y’’-10y’+25y=4e^(5x)
у ’’ минус 10 у ’ плюс 25 у равно 4e в степени (5 х )
у ’’ минус 10 у ’ плюс 25 у равно 4e в степени (5 х )
y’’-10y’+25y=4e(5x)