3sin^2x-5sinx-2=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 3sin^2x-5sinx-2=0

    Решение

    Вы ввели [src]
         2                      
    3*sin (x) - 5*sin(x) - 2 = 0
    3sin2(x)5sin(x)2=03 \sin^{2}{\left(x \right)} - 5 \sin{\left(x \right)} - 2 = 0
    Подробное решение
    Дано уравнение
    3sin2(x)5sin(x)2=03 \sin^{2}{\left(x \right)} - 5 \sin{\left(x \right)} - 2 = 0
    преобразуем
    3sin2(x)5sin(x)2=03 \sin^{2}{\left(x \right)} - 5 \sin{\left(x \right)} - 2 = 0
    (3sin2(x)5sin(x)2)+0=0\left(3 \sin^{2}{\left(x \right)} - 5 \sin{\left(x \right)} - 2\right) + 0 = 0
    Сделаем замену
    w=sin(x)w = \sin{\left(x \right)}
    Это уравнение вида
    a*w^2 + b*w + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    w1=Db2aw_{1} = \frac{\sqrt{D} - b}{2 a}
    w2=Db2aw_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=3a = 3
    b=5b = -5
    c=2c = -2
    , то
    D = b^2 - 4 * a * c = 

    (-5)^2 - 4 * (3) * (-2) = 49

    Т.к. D > 0, то уравнение имеет два корня.
    w1 = (-b + sqrt(D)) / (2*a)

    w2 = (-b - sqrt(D)) / (2*a)

    или
    w1=2w_{1} = 2
    Упростить
    w2=13w_{2} = - \frac{1}{3}
    Упростить
    делаем обратную замену
    sin(x)=w\sin{\left(x \right)} = w
    Дано уравнение
    sin(x)=w\sin{\left(x \right)} = w
    - это простейшее тригонометрическое ур-ние
    Это ур-ние преобразуется в
    x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
    x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
    Или
    x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
    x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
    , где n - любое целое число
    подставляем w:
    x1=2πn+asin(w1)x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)}
    x1=2πn+asin(2)x_{1} = 2 \pi n + \operatorname{asin}{\left(2 \right)}
    x1=2πn+asin(2)x_{1} = 2 \pi n + \operatorname{asin}{\left(2 \right)}
    x2=2πn+asin(w2)x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)}
    x2=2πn+asin(13)x_{2} = 2 \pi n + \operatorname{asin}{\left(- \frac{1}{3} \right)}
    x2=2πnasin(13)x_{2} = 2 \pi n - \operatorname{asin}{\left(\frac{1}{3} \right)}
    x3=2πnasin(w1)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi
    x3=2πn+πasin(2)x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(2 \right)}
    x3=2πn+πasin(2)x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(2 \right)}
    x4=2πnasin(w2)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi
    x4=2πnasin(13)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(- \frac{1}{3} \right)} + \pi
    x4=2πn+asin(13)+πx_{4} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{3} \right)} + \pi
    График
    0-80-60-40-2020406080-100100-1010
    Быстрый ответ [src]
    x1 = pi + asin(1/3)
    x1=asin(13)+πx_{1} = \operatorname{asin}{\left(\frac{1}{3} \right)} + \pi
    x2 = -asin(1/3)
    x2=asin(13)x_{2} = - \operatorname{asin}{\left(\frac{1}{3} \right)}
    x3 = pi - re(asin(2)) - I*im(asin(2))
    x3=re(asin(2))+πiim(asin(2))x_{3} = - \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}
    x4 = I*im(asin(2)) + re(asin(2))
    x4=re(asin(2))+iim(asin(2))x_{4} = \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}
    Сумма и произведение корней [src]
    сумма
    0 + pi + asin(1/3) - asin(1/3) + pi - re(asin(2)) - I*im(asin(2)) + I*im(asin(2)) + re(asin(2))
    (re(asin(2))+iim(asin(2)))(2π+re(asin(2))+iim(asin(2)))\left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) - \left(- 2 \pi + \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)
    =
    2*pi
    2π2 \pi
    произведение
    1*(pi + asin(1/3))*-asin(1/3)*(pi - re(asin(2)) - I*im(asin(2)))*(I*im(asin(2)) + re(asin(2)))
    1(asin(13)+π)(asin(13))(re(asin(2))+πiim(asin(2)))(re(asin(2))+iim(asin(2)))1 \left(\operatorname{asin}{\left(\frac{1}{3} \right)} + \pi\right) \left(- \operatorname{asin}{\left(\frac{1}{3} \right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)
    =
    (pi + asin(1/3))*(I*im(asin(2)) + re(asin(2)))*(-pi + I*im(asin(2)) + re(asin(2)))*asin(1/3)
    (re(asin(2))+iim(asin(2)))(asin(13)+π)(π+re(asin(2))+iim(asin(2)))asin(13)\left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(\operatorname{asin}{\left(\frac{1}{3} \right)} + \pi\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \operatorname{asin}{\left(\frac{1}{3} \right)}
    Численный ответ [src]
    x1 = 85.1628385563785
    x2 = -94.5876165171479
    x3 = -15.3681263584948
    x4 = 9.7646148702235
    x5 = -25.4725781381725
    x6 = -63.17168998125
    x7 = 53.7469120204806
    x8 = -103.332720659009
    x9 = 47.463726713301
    x10 = 12.2265337049051
    x11 = -46.7840528943928
    x12 = -69.4548752884296
    x13 = 75.0583867767009
    x14 = -6.62302221663371
    x15 = -166.164573730805
    x16 = 78.879653249199
    x17 = -56.8885046740704
    x18 = 5.94334839772546
    x19 = 37.3592749336234
    x20 = -82.0212459027887
    x21 = -0.339836909454122
    x22 = 97.7292091707377
    x23 = 3.48142956304392
    x24 = 24.7929043192642
    x25 = 34.8973560989418
    x26 = 68.7752014695213
    x27 = -88.3044312099683
    x28 = -2.80175574413567
    x29 = 60.0300973276602
    x30 = 16.0478001774031
    x31 = -27.934496972854
    x32 = 31.0760896264438
    x33 = 91.4460238635581
    x34 = 41.1805414061214
    x35 = -34.2176822800336
    x36 = -40.5008675872132
    x37 = 175.589351691574
    x38 = -78.1999794302907
    x39 = 28.6141707917623
    x40 = -6117020.52838282
    x41 = 66.3132826348398
    x42 = -38.0389487525316
    x43 = -19.1893928309929
    x44 = -31.7557634453521
    x45 = -90.7663500446499
    x46 = 81.3415720838805
    x47 = 62.4920161623417
    x48 = -65.6336088159315
    x49 = 18.5097190120846
    x50 = 100.191128005419
    x51 = -21.6513116656744
    x52 = 2512.93428596238
    x53 = 72.5964679420194
    x54 = -75.7380605956092
    x55 = -71.9167941231111
    x56 = 49.9256455479826
    x57 = -50.6053193668908
    x58 = -53.0672382015724
    x59 = 87.6247573910601
    x60 = -84.4831647374703
    x61 = -1194.14504527358
    x62 = -44.3221340597112
    x63 = 56.2088308551622
    x64 = -9.08494105131526
    x65 = -59.350423508752
    x66 = 22.3309854845827
    x67 = 93.9079426982397
    x68 = 4335.05802504446
    x69 = -12.9062075238133
    x70 = -97.0495353518295
    x71 = 43.642460240803
    График
    3sin^2x-5sinx-2=0 (уравнение) /media/krcore-image-pods/hash/equation/8/ab/abd4e22882c745ac5fd8a9996c7fd.png