3sin^2x-5sinx-2=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 3sin^2x-5sinx-2=0
Решение
Подробное решение
Дано уравнение3 sin 2 ( x ) − 5 sin ( x ) − 2 = 0 3 \sin^{2}{\left(x \right)} - 5 \sin{\left(x \right)} - 2 = 0 3 sin 2 ( x ) − 5 sin ( x ) − 2 = 0 преобразуем3 sin 2 ( x ) − 5 sin ( x ) − 2 = 0 3 \sin^{2}{\left(x \right)} - 5 \sin{\left(x \right)} - 2 = 0 3 sin 2 ( x ) − 5 sin ( x ) − 2 = 0 ( 3 sin 2 ( x ) − 5 sin ( x ) − 2 ) + 0 = 0 \left(3 \sin^{2}{\left(x \right)} - 5 \sin{\left(x \right)} - 2\right) + 0 = 0 ( 3 sin 2 ( x ) − 5 sin ( x ) − 2 ) + 0 = 0 Сделаем заменуw = sin ( x ) w = \sin{\left(x \right)} w = sin ( x ) Это уравнение видаa*w^2 + b*w + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:w 1 = D − b 2 a w_{1} = \frac{\sqrt{D} - b}{2 a} w 1 = 2 a D − b w 2 = − D − b 2 a w_{2} = \frac{- \sqrt{D} - b}{2 a} w 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 3 a = 3 a = 3 b = − 5 b = -5 b = − 5 c = − 2 c = -2 c = − 2 , тоD = b^2 - 4 * a * c = (-5)^2 - 4 * (3) * (-2) = 49 Т.к. D > 0, то уравнение имеет два корня.w1 = (-b + sqrt(D)) / (2*a) w2 = (-b - sqrt(D)) / (2*a) илиw 1 = 2 w_{1} = 2 w 1 = 2 Упростить w 2 = − 1 3 w_{2} = - \frac{1}{3} w 2 = − 3 1 Упростить делаем обратную заменуsin ( x ) = w \sin{\left(x \right)} = w sin ( x ) = w Дано уравнениеsin ( x ) = w \sin{\left(x \right)} = w sin ( x ) = w - это простейшее тригонометрическое ур-ние Это ур-ние преобразуется вx = 2 π n + asin ( w ) x = 2 \pi n + \operatorname{asin}{\left(w \right)} x = 2 πn + asin ( w ) x = 2 π n − asin ( w ) + π x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi x = 2 πn − asin ( w ) + π Илиx = 2 π n + asin ( w ) x = 2 \pi n + \operatorname{asin}{\left(w \right)} x = 2 πn + asin ( w ) x = 2 π n − asin ( w ) + π x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi x = 2 πn − asin ( w ) + π , где n - любое целое число подставляем w:x 1 = 2 π n + asin ( w 1 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)} x 1 = 2 πn + asin ( w 1 ) x 1 = 2 π n + asin ( 2 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(2 \right)} x 1 = 2 πn + asin ( 2 ) x 1 = 2 π n + asin ( 2 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(2 \right)} x 1 = 2 πn + asin ( 2 ) x 2 = 2 π n + asin ( w 2 ) x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)} x 2 = 2 πn + asin ( w 2 ) x 2 = 2 π n + asin ( − 1 3 ) x_{2} = 2 \pi n + \operatorname{asin}{\left(- \frac{1}{3} \right)} x 2 = 2 πn + asin ( − 3 1 ) x 2 = 2 π n − asin ( 1 3 ) x_{2} = 2 \pi n - \operatorname{asin}{\left(\frac{1}{3} \right)} x 2 = 2 πn − asin ( 3 1 ) x 3 = 2 π n − asin ( w 1 ) + π x_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi x 3 = 2 πn − asin ( w 1 ) + π x 3 = 2 π n + π − asin ( 2 ) x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(2 \right)} x 3 = 2 πn + π − asin ( 2 ) x 3 = 2 π n + π − asin ( 2 ) x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(2 \right)} x 3 = 2 πn + π − asin ( 2 ) x 4 = 2 π n − asin ( w 2 ) + π x_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi x 4 = 2 πn − asin ( w 2 ) + π x 4 = 2 π n − asin ( − 1 3 ) + π x_{4} = 2 \pi n - \operatorname{asin}{\left(- \frac{1}{3} \right)} + \pi x 4 = 2 πn − asin ( − 3 1 ) + π x 4 = 2 π n + asin ( 1 3 ) + π x_{4} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{3} \right)} + \pi x 4 = 2 πn + asin ( 3 1 ) + π
График
0 -80 -60 -40 -20 20 40 60 80 -100 100 -10 10
x 1 = asin ( 1 3 ) + π x_{1} = \operatorname{asin}{\left(\frac{1}{3} \right)} + \pi x 1 = asin ( 3 1 ) + π x 2 = − asin ( 1 3 ) x_{2} = - \operatorname{asin}{\left(\frac{1}{3} \right)} x 2 = − asin ( 3 1 ) x3 = pi - re(asin(2)) - I*im(asin(2)) x 3 = − re ( asin ( 2 ) ) + π − i im ( asin ( 2 ) ) x_{3} = - \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)} x 3 = − re ( asin ( 2 ) ) + π − i im ( asin ( 2 ) ) x4 = I*im(asin(2)) + re(asin(2)) x 4 = re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) x_{4} = \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)} x 4 = re ( asin ( 2 ) ) + i im ( asin ( 2 ) )
Сумма и произведение корней
[src] 0 + pi + asin(1/3) - asin(1/3) + pi - re(asin(2)) - I*im(asin(2)) + I*im(asin(2)) + re(asin(2)) ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) − ( − 2 π + re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) - \left(- 2 \pi + \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) − ( − 2 π + re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) 1*(pi + asin(1/3))*-asin(1/3)*(pi - re(asin(2)) - I*im(asin(2)))*(I*im(asin(2)) + re(asin(2))) 1 ( asin ( 1 3 ) + π ) ( − asin ( 1 3 ) ) ( − re ( asin ( 2 ) ) + π − i im ( asin ( 2 ) ) ) ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) 1 \left(\operatorname{asin}{\left(\frac{1}{3} \right)} + \pi\right) \left(- \operatorname{asin}{\left(\frac{1}{3} \right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) 1 ( asin ( 3 1 ) + π ) ( − asin ( 3 1 ) ) ( − re ( asin ( 2 ) ) + π − i im ( asin ( 2 ) ) ) ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) (pi + asin(1/3))*(I*im(asin(2)) + re(asin(2)))*(-pi + I*im(asin(2)) + re(asin(2)))*asin(1/3) ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) ( asin ( 1 3 ) + π ) ( − π + re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) asin ( 1 3 ) \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(\operatorname{asin}{\left(\frac{1}{3} \right)} + \pi\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \operatorname{asin}{\left(\frac{1}{3} \right)} ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) ( asin ( 3 1 ) + π ) ( − π + re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) asin ( 3 1 )